
c. Götz, u. nikolAus  –   J. Print mediA technol. res. 5(2016)1, 61–71 61

JPMTR 078 | 1512 Research paper
DOI 10.14622/JPMTR-1512 Received: 2015-12-22
UDC 7.012 : 004.91 Accepted: 2016-03-07

Formatting print layouts with CSS3

Christin Götz, Ulrich Nikolaus

Leipzig University of  Applied Sciences (HTWK Leipzig), E-mail: christin.goetz@pagina-tuebingen.de 
Gustav-Freytag-Str. 42,   ulrich.nikolaus@htwk-leipzig.de 
04277 Leipzig, Germany 

Abstract

Cascading Style Sheets (CSS) have already been the de facto standard for the visual representation of  digital content for 
some time now. However, advanced functions intended for the formatting of  print layouts have been included only 
recently. With CSS level 3, which is still under development, several new features have been added to the standard, such 
as, for example, the definition of  marginalia, footnotes, running heads or the support for advanced micro-typographic 
settings like OpenType features. In theory, these new features could be the key to a significant simplification of 
cross-media publishing, based only on the use of  XML or (X)HTML and CSS3. In this paper, the current status of 
implementation of  CSS3 features for the formatting of  XML-based print layouts is discussed and its current support by 
rendering engines analyzed. The results suggest that CSS3 can be used at present for the formatting of  simply structured 
content, but not for visually or semantically complex print layouts.

Keywords: XML, Cascading Style Sheets, cross-media publishing, electronic publishing, rendering engine

1. Introduction and background

The more the publication of  e-books or other digi-
tal content formats becomes firmly established, the 
more important effective procedures for multi-chan-
nel publishing become for publisher competitiveness 
(Kleinfeld, 2013; Ott, 2014, p. 3; Quin, 2014, p. 253). Of 
course, various computer-based technologies for pro-
fessional typesetting have been around since the 1980s 
– such as TeX by Donald E. Knuth (1984), LaTeX by 
Leslie Lamport (1994), Standard Generalized Markup 
Language (SGML) by Charles F. Goldfarb (1990) or 
various desktop publishing systems ranging from Aldus 
PageMaker and QuarkXpress to Adobe InDesign, to 
name but a few. However, they were mainly intended to 
enable high-resolution or desktop printers to translate 
a pre-defined design into printed form (cf. Crawford, 
1994, p. 101).

The eXtensible Markup Language (XML), on the other 
hand, designed in 1998 with the purpose to become the 
“future lingua franca for the exchange of  structured 
data” (Bosak, 1998, p. 120), has a much stronger focus 
on principles like media and platform independence. It 
has therefore become a key technology for cross-me-
dia publishing, where information contained in one 
single source can, in principle, be published without 
manual intervention on different output channels in 
order to become a printed book, a website, an e-book 

– or even an accessible document for handicapped users 
(cf. Nikolaus, 2010, p. 14). 

However, in accordance with its media-independent 
approach, XML only describes the semantic struc-
ture of  a document, not its layout. In order to specify 
a document’s design, an additional stylesheet language 
is needed. Modern multi-channel publishing workflows 
automatically generate print layouts (along with var-
ious electronic products) by applying the eXtensible 
Stylesheet Language Formatting Objects (XSL-FO) 
to media independent (XML) data (Ott, 2014, p. 117; 
Quin, 2014, p. 253). However, XSL-FO has not become 
very popular within the publishing industry yet (Ott, 
2014, p. 117; McKesson, 2012). Cascading Style Sheets 
(CSS), on the other hand, are extremely popular for the 
formatting of  web content as well as e-books, although 
until now, they have barely been used in formatting of 
print layouts. While CSS has become a de facto standard 
for the styling of  electronic documents, print layouts 
still have to be generated using different technology – 
this contradicts the basic concept to generate a coher-
ent and truly homogeneous cross-media publishing 
workflow.

Nevertheless, an (albeit rather limited) paged media model 
has been added to CSS level 2 as early as 1998 – which 



62 c. Götz, u. nikolAus  –   J. Print mediA technol. res. 5(2016)1, 61–71

basically makes it possible to generate and format print 
layouts from HyperText Markup Language (HTML) or 
XML source documents using CSS as well (Ertel and 
Laborenz, 2014, p. 58; Harold and Means, 2004, p. 221; 
Lie and Day, 2005).

Since 1998 the CSS print layout functionality has been 
improved slowly but steadily by the World Wide Web 
Consortium (W3C). Thus, the current version CSS3 – 
with its modular design intended to simplify parallel 
development (Meyer, 2012) – comprises several CSS 
modules defining several new rules, functions, proper-
ties, values and selectors which can be used for the auto-
matic generation of  print layouts (Graham, 2014, p. 265; 
Quin, 2013, p. 261). Amongst others, CSS3 includes 
modules to:

• define and design multi-column layouts for elements 
in the CSS Multi-column Layout Module (W3C, 2011b),

• define color and opacity using different color mod-
els like RGB, HSL or CMYK in the CSS Color Module 
Level 3 and Level 4 (W3C, 2011a; W3C, 2014b), or

• make various micro-typographic settings – for instance 
in the CSS Fonts Module Level 3 (W3C, 2013a) and the 
CSS Text Module Level 3 (CSS3TEXT) (W3C, 2013d). 

Apart from these more general CSS3 modules that can 
be used for other purposes as well (such as the format-
ting of  digital content), CSS3 introduced several new 
modules that are of  particular importance for format-
ting print layouts, such as:

• The CSS Paged Media Module Level 3 (CSS3PAGE) 
describes a page model (or box model) for print lay-
outs and defines rules, properties and special page 
selectors for the formatting of  paged media (e.g. the 
definition of  page size, orientation and margins) 
or the customization of  headers and footers (size, 
styling and positioning). Furthermore, it allows for 
the positioning of  content such as page counters in 
headers and footers (W3C, 2013c).

• The CSS Generated Content for Paged Media Module 
(CSS3GCPM) contains features to generate and to 
place content in special page areas automatically and 
to add, for instance, running heads, footnotes and 
cross-references to paged media (W3C, 2014d).

• The CSS Fragmentation Module Level 3 (CSS3BREAK) 
includes properties to control pagination and defines 
fragmentation rules for page and text breaks which 
should be observed and applied when a static layout 
is generated (W3C, 2014c).

2. Methods

The objective of  this paper was to explore how the new 
features of  CSS3 can be used to render paged media 
layouts out of  media independent data. In order to 
achieve this aim, a constructional approach was used: 
First, the structure, content and design of  thirty text-
books and other non-fiction books (only Latin char-
acters) with complex print layouts were analyzed to 
identify specific design elements that characterize paged 
media. Based on this analysis, a test document was 
developed to combine all these features into one single 
book. Next, a media independent XML file describing 
the content and structure of  this test document and a 
CSS3 document containing the corresponding paged 
media formatting instructions were prepared. The con-
tent and layout files were validated (using both valida-
tion tools of  the < oXygen/> XML editor and the W3C’s 
online CSS Validation Service) to ensure the conform-

ity of  the XML content file with the semantic language 
DocBook V5 and the CSS layout document with the 
specification of  CSS3.

From these two files, a paged media PDF document 
was generated automatically using two different render-
ing engines: YesLogic Prince v9 rev5.0 and Antenna House 
Formatter V6.2 (evaluation version), in further text des-
ignated as PR and AH, respectively. At the time of  the 
tests, these two renderers were considered to be the two 
major commercial tools that already support features 
of  the CSS3 Paged Media Module (cf. Kleinfeld, 2013), 
while the Paged Media support of  other programs and 
projects was supposed to be insufficient (Fellenz and 
Fischer, 2013). Finally, the generated PDF documents 
were analyzed and the conformity of  the resulting paged 
media layout to the initial layout specification was tested.

3. Results 

In contrast to previous CSS versions, CSS3 includes a 
wide range of  new rules, properties, values and selec-
tors to format print layouts with complex structures. 
The CSS3 modules support various new macro- and 
micro-typographic settings for print layouts and pro-
vide a formatting functionality for paged media that 
is comparable to professional typesetting software 
applications, such as the creation of  sophisticated run-
ning heads and footnotes, the addition of  marginalia, 

the definition of  baseline grids and floating images or 
the specification of  advanced typographic settings for 
Open Type Fonts (OTF). Based on the nomenclature 
of  classic layout processes, the new CSS3 features for 
print layouts can be categorized into six classes: Page 
settings, Paragraph, Word and character formatting, Automatic 
content generation, Fragmentation options, Settings for printing 
and distribution, and Selectors. For each of  these catego-
ries, the following section will provide a brief  overview 



c. Götz, u. nikolAus  –   J. Print mediA technol. res. 5(2016)1, 61–71 63

of  the new CSS3 features for formatting print lay-
outs. Next, the results of  the rendering tests will be 
presented in tabular form, followed by illustrative 
examples.

3.1 Page settings

Compared to CSS2.1, CSS3 provides several new rules, 
properties and values to define paged media. Beside 
the description of  page sizes, page margins (controlling 
print space) and page orientation (W3C, 2013c), it is also 
possible to create and control baseline grids and snaps 
(Lie, 2015; W3C, 2014e) or to define other layout ele-
ments, such as pagination, column titles, footnotes or 
margin columns, and to describe their position on the 
page and their styling (Lie, 2015; W3C, 2013c; W3C, 
2014d). Furthermore, CSS3 supports the usage of  sam-
ple pages (W3C, 2013c).

Thus, CSS3 offer a functionality comparable to DTP 
applications when it comes to the formatting of  paged 
layouts. Being style sheets for markup languages, how-
ever, CSS files have to be parsed and rendered by cor-
responding user agents. The new features are, thus, only 
applicable if  these renderers support them (see also 
Götz and Nikolaus, 2013). Unfortunately, this could not 
always be taken for granted. When the test document 
was rendered by the professional typesetting applica-
tions PR and AH, the CSS style definitions for page size, 
page margins (including different margin settings for left 
and right pages), page orientation and the positioning of 
column titles and page numbers, respectively, were inter-
preted according to the specification (Table 1). 

However, the rendering of  column titles was differing: 
While PR rendered column titles according to the CSS 
specification, AH produced some unexpected results 

Figure 1: PR rendered column titles according to CSS specification (left) but AH (right) generated an additional offset  
and converted the column title to uppercase although this text transformation was only declared for the chapter titles and not for the column titles

Figure 2: Rendering results of footnote styles by PR (left) and AH (right) for the CSS declaration that included a dividing line  
between main text and footnotes, a one column footnote area under the double-columned main text  

with a maximum height of 25 % of page size, and custom footnote markers and positioning



64 c. Götz, u. nikolAus  –   J. Print mediA technol. res. 5(2016)1, 61–71

when the column title was generated automatically from 
the chapter titles using the property string-set and the 
function string(). In this case, a text transformation to 
uppercase that was only intended for the chapter titles 
themselves was unintentionally propagated to the col-
umn title as well (Figure 1).

Table 1: Excerpt of test results for page settings,  
for more detailed descriptions cf. Götz (2014)

Analyzed and tested new features 
of  CSS3 for page setting 

PR AH

Page size [f] ● ●
Orientation ● ●
Print space, margins,  
double page layout ● ●

Column title [f] ● ◒
Page number [f] ● ●
Footnote (notes, counter, area) [f] ◒ ◒
Margin column [d] ○ ○
Page template [d] and page selector ◒ ◒
Baseline grid [d]  
and register accuracy ○ ○

Legend: [ f ] format, [d] definition, ● full support,  
◒ partial support, ○ no support

The rendering of  footnotes was also heterogeneous 
(Figure 2). The styling of  both footnote element and 
footnote call were consistent (full CSS support), as was 
the styling of  footnote counters (although user-defined 
counters were only rendered if  they were defined using 
strings but not when the @count-style rule was used). 
Changes of  the display property of  footnote elements 
(from block to inline) were ignored by both renderers. 
The styling of  footnote markers was fully supported 
by AH but only partially by PR (footnote markers were 
always positioned outside of  the print area, regardless 
of  the CSS property settings). Custom changes of  the 
footnote area were totally ignored by PR, which only 
used predefined formatting settings, while AH sup-
ported a few style settings like background, border-clip 
and text spacing; though it ignored the CSS properties 
for height and width of  footnote area as well).

The rendering of  marginalia did not comply with the 
CSS specification either, although renderer-specific 
workarounds to define such layout elements (and to 
fill them with content) could be found. However, none 
of  these solutions proved to be fully satisfactory, as an 
alignment neither to baseline grids nor to corresponding 
elements in the main text could be realized.

Additional rendering problems could be found while 
working with page templates and page selectors. Page 
templates offer the opportunity to pre-define common 

page layouts; page selectors can be used to define vary-
ing layouts for the first page of  a document or chapter, 
for blank pages or all left or right pages, respectively 
(:first, :blank, :left, and :right). In general, both the 
page template functionality and the page selectors were 
supported by both the PR and AH renderers; however, 
the pseudo class :nth() intendet to define a different 
styling for every fifth or ninth page and so on, was not.

3.2 Paragraph, word and character formatting

The CSS3 specification provides new features for the for-
matting of  textual content. In addition to CSS1 and 2.1 
properties such as font-family, font-size, font-weight 
and font-style, it is now possible, for instance, to spec-
ify font-stretch (e. g. condensed or semi-expanded font 
faces) or to use OpenType features like standard or his-
torical ligatures and small and petite capitals, respectively, 
through font-variant and font-feature-settings 
(W3C, 2013a). As to justification, CSS3TEXT offers, for 
example, text-justify adding new sophisticated justifi-
cation algorithms and hanging-punctuation specifying 
if  a punctuation mark at the start or end of  a text line 
should be rendered outside or inside the line box (W3C, 
2013d). Moreover, multi-column layouts can be speci-
fied (W3C, 2011b); also, leaders for tables of  contents, 
registers and the like are defined and formatted using the 
leaders() function (W3C, 2014d). Customized counters 
for lists, etc., can be declared (with @counter-style and 
::marker) and additional settings for the positioning, 
floating and the column span of  figures and boxes are 
available (float properties like top-bottom, column-span, 
float-defer-column, float-defer-line, float-offset). 
Text can now be wrapped around other content (W3C, 
2013b; Lie, 2014) and boxes can be embroidered with 
rounded corners or shadows (W3C, 2014a).

Just like the renderers’ support for page settings, the 
results for paragraph, word and character formatting 
were equally mixed (Table 2). Only the leaders() func-
tion was fully supported by both rendering engines. 
As to the font settings, only the CSS3 @font-face rule 
(used to embed fonts into paged media) was supported 
by both PR and AH, while font-stretch and font-var-
iant were not supported by either one.

The justification test showed that currently only text-
align-last (used to specify the alignment of  the last 
line of  text of  a paragraph) is partially supported by 
PR. AH, on the other hand, fully supported the text 
justification properties hanging-punctuation and text-
align-last – but only partially supported the new text-
align values and ignored the properties font-kerning 
and text-justify (though a proprietary version of  the 
latter is available: (-ah-)text-justify-trim).

As for multiple column page layouts, the column prop-
erties columns, column-rule and column-fill can already 



c. Götz, u. nikolAus  –   J. Print mediA technol. res. 5(2016)1, 61–71 65

be used. The column-span settings, however, were 
ignored by PR if  used for content that was generated by 
pseudo elements, and AH ignored  column-span: all if 
it was used in the footnote area (instead, the columns in 
the footnote area always matched the layout of  the main 
text columns, see Figure 2).

Table 2: Excerpt of test results for paragraph, word and character 
formatting, for more detailed descriptions cf. Götz (2014)

Analyzed and tested new 
features of  CSS3 for paragraph, 
word and character formatting

PR AH

Font settings ◒ ◒
Justification ◒ ◒
Columns ◒ ◒
Depiction and decoration  
(e.g. text indent, text orientation,  
text decoration, text transform)

◒ ◒

Leaders for register ● ●
Individual counter for e. g. lists ◒ ◒
Figures and boxes ◒ ◒

Legend: ● full support, ◒ partial support,

The writing-mode feature (top-to-bottom, right-to-
left and left-to-right) was supported by both render-
ers. PR additionally recognized the new value hanging of 
text-indent, while AH supported text-transform with-
out limitation. Other  functions were only partially imple-
mented (AH: text- orientation, text- decoration-style 
and text-shadow) or unsupported (PR: text- orientation, 
text-transform, text-shadow and text-decoration prop-
erties; AH: text-indent:  hanging, text-decoration-

underline- position and text-decoration-skip; both: 
text- indent: each-line). Again, PR and AH sometimes  
offered proprietary alternatives (YesLogic, 2015a; Antenna  
House, 2014).

The CSS styles to define individual counters are equally 
unknown to the renderers, although the pseudo element 
::marker can be used to customize predefined counters 
for lists, footnotes and the like. 

In regard to the formatting of  figures, CSS3 offers many 
new features, but only a few of  them can already be 
used. The property float, to begin with, is supposed to 
control the alignment of  figures on the page ( vertically: 
float: top | bottom | top-bottom | bottom-top; hori-
zontally: float: inside | outside). The properties top, 
bottom, inside and outside are currently supported by 
both AH and PR, whereas top-bottom and bottom-top 
(intended to define preferred alignments that can, 
however, be overridden by the renderers, if  necessary) 
were not. The alignment in multi-column layouts can 
be controlled using column-span. Here, only the values 

none and all were rendered correctly, while it was not 
possible to span an image across a specific number of 
columns using integer or length values. Both the new 
float-defer-* settings (which can be used to transfer a 
figure to another column or another page irrespective 
of  its position in the original XML document) and 
the advanced new wrap configurations, wrap-side and 
wrap-contrast (Lie, 2014) or clear-side and exclude-
level (W3C, 2013b), were not considered during the 
rendering process at all.

The performance of  the renderers for CSS3 box model 
instructions – border-image to use bitmap images as 
border style patterns, border-radius to define rounded 
borders and box-shadow to attach shadows to an element 
(W3C, 2014a) was equally mixed. Border images were 
replaced by black solid borders by both PR and AH; 
box-shadow was only supported by AH, although the 
property was not interpreted according to CSS3 spec-
ification (box and content were converted to an image 
with low resolution and the RGB color mode was used, 
although CMYK colors had been defined throughout 
the document). The border-radius-* feature could be 
used according to specification, although PR did not 
accept the shorthand border-radius to define different 
radii for each corner; instead, the longhand terms such 
as border-bottom-left-radius had to be resorted to.

3.3 Automatically generated content

Automatically generated content, like paginations, col-
umn titles, footnotes, cross-references, tables of  content 
or catchword indexes, is very important for effective 
cross-media publishing. Consequently, CSS3 offers var-
ious settings to generate paged media content automati-
cally. Compared to previous CSS versions, CSS3 includes 
additional functionalities for:

• the automatic generation of  paginations: content: 
counter(page) (W3C, 2013c),

• footnotes: the declaration float:  footnote turns an 
element into a footnote; this conversion necessitates 
several background processes – the element has to 
be moved from the main text to the footnote area, a 
footnote marker has to be displayed before the ele-
ment as well as a footnote call in the main text, and 
the footnote counter has to be incremented (W3C, 
2014d; Lie, 2015),

• running headers and footers: the property string-set 
combined with content: string() is used to copy the 
textual content of  an element into the header/footer 
or position: running() and  content: element() 
to move an element including all of  its substruc-
tures from the main text to the page margin boxes 
for headers and footers, respectively (W3C, 2014d),

• cross-references: target- counter() and  target- 
counters() generate numbered cross-references and 
 target-text() retrieves the text value of  an element 
referred to using an URL (McKesson, 2012; Lie, 2015),



66 c. Götz, u. nikolAus  –   J. Print mediA technol. res. 5(2016)1, 61–71

• bookmarks: CSS3 offers three properties to gener-
ate bookmarks: bookmark-level to define the hierar-
chy level of  a bookmark in the bookmark structure, 
bookmark-label to declare the text which should be 
displayed to identify a bookmark entry and book-
mark-state to specify the state of  a bookmark 
hierarchy as open or closed – with open state book-
marks displaying the next level of  bookmarks (W3C, 
2014d; Lie, 2015).

Sophisticated as these new functions may be, there are 
still some features for automatic content creation left 
that the CSS3 specification does not include up to now: 
catchword indexes and tables of  content. For the time 
being, this content has to be created semi-automati-
cally using XSLT (XSL Transformations) and the CSS3 
property for cross-references; for more details see  
Götz (2014).

Considering the features that are already included in the 
CSS3 specification, the test results show that only the 
automatic pagination and the definition of  footnotes 
are currently supported satisfactorily by the renderers 
(Table 3); all other aforementioned functionalities for 
automatic content generation are only partially imple-
mented. Column titles could be created using both 
methods mentioned above (string-set: [< identifier> 
< content-list>]; and content: string() or content: 
element() and position: running()), but not all argu-
ments intended to specify the mentioned content could 
be used by PR and AH (especially first-except, which 
allows for an empty header/footer on the page where a 
new column title is assigned, is currently unsupported).

As to the automatic generation of  cross-references, 
the test shows that the content values target-coun-
ter() and target-counters() (to create dynamic paged 
cross-references that automatically adapt the pagination 

Table 3: Excerpt of test results for generated content,  
for more detailed descriptions cf. Götz (2014)

Analyzed and tested 
new features of  CSS3 for 
automatic generated content

PR AH

Table of  content [d] ◐ ◐
Index [d] ◐ ◐
Column title [d] ◒ ◒
Page number [d] ● ●
Footnote [d] ● ●
Content()-function ◒ ○
Cross-reference ◒ ◒
Bookmarks ◒ ◒

Legend: [d] definition, ● full support, ◐ support only in 
combination with an XSLT, ◒ partial support, ○ no support

to page size or layout changes) can be used by both ren-
dering engines. The property target-text(), to gener-
ate customized textual references like “see chapter (name 
of chapter), p. (page number)”, however, is currently only 
supported by AH.

On the other hand, the properties bookmark-level and 
bookmark-state for the generation of  bookmarks were 
already fully supported. Bookmark labels were tagged 
correctly by both PR and AH when the text labels were 
hard-coded via string. PR also supported the content() 
function that can be used to define bookmark labels 
dynamically, but only without any argument (content()) 
or if  the property text was used (content(text)) – 
other arguments like before, after or first-letter 
were unsupported. AH offered no support at all of  the 
content() function – neither for the labeling of  book-
marks nor in any other case.

3.4 Fragmentation options

To control the fragmentation of  pages, columns and 
regions, CSS3 provides the properties break-before and 
break-after. These are similar to the CSS2.1 properties 
page-break-before and page-break- after, but new val-
ues, like page, column (inserting mandatory page and col-
umn breaks, respectively) and recto (adding page breaks 
so that the following page is a recto page) are added 
(W3C, 2014c). For in-text breaks, CSS3TEXT contains 
e.g. the properties line-break (fragmentation options 
for punctuations), word-break (breaking rules for let-
ters) and hyphens (control of  word splitting) (W3C, 
2013d). In the CSS3GCPM module, the W3C also adds 
the property footnote-policy. This is important for 
fragmentation if  a footnote call is located near the bot-
tom of  the print space so that there is not enough space 
to render the complete footnote body on the same page. 
With footnote-policy, it can be specified whether a 
page break should be inserted at the start of  the line or 
before the corresponding paragraph, so that both refer-
ence and body of  the footnote are displayed together on 
the same page (W3C, 2014d).

Although only about 20 % of  the CSS3 fragmenta-
tion settings were supported in the test (Table 4), the 
rendering engines use proprietary methods to define 
breaking rules. For page breaks, the new properties 
break- before/-after were only supported by AH, but 
both rendering engines accepted the old CSS2.1 page-
break-before/-after properties (limited to the CSS2.1 
value set always, avoid, left and right). CSS3 line breaks  
were ignored by both PR and AH. AH supported CSS3 
word fragmentation settings and PR as well as AH used pro-
prietary commands for hyphenation (prince- hyphenate- 
lines, prince-hyphenate-before, prince-hyphenate- 

after (YesLogic, 2015a), see Figure 3. CSS3 page break 
settings for footnotes were ignored, but again, PR added 
a proprietary command named prince-footnote-policy.



c. Götz, u. nikolAus  –   J. Print mediA technol. res. 5(2016)1, 61–71 67

3.5 Settings for printing and distribution

The new CSS3 features for printing and distribution 
include properties to switch between color spaces like 
RGB (W3C, 2011a) and CMYK (W3C, 2014b), to con-
trol image resolutions (W3C, 2012) and to define edge 
trim, corner marks and bleed (W3C, 2013c). These 
CSS3 functionalities were mostly supported in the test 
except for the definition of  CMYK colors (Table 5). 
The rendering engine PR uses a proprietary command 
instead of  the one specified by the W3C. Color manage-

ment of  images, is only supported by AH. Both render-
ers also use different visualizations for crop marks and 
bleed (Figure 4).

3.6 Selectors

The CSS3 specification includes a wide range of  new 
selectors to select and style elements separately. For 
instance, the new sibling selector E ~ F enables the selec-
tion of  all following siblings of  an element and not only 
the direct successor, which can be selected using E + F. 
The new pseudo class :nth-child(n) makes it possible 
to define styles e. g. for each odd table row with tr:nth-
child(odd) {…}, and the pseudo element selector 
::marker to declare styles only for the marker, but not 
for the text, of  a list with li::marker {…} (W3C, 2011c).

Figure 3: Two renderings showing the effect of a proprietary feature to 
influence hyphenation: due to the command prince-hyphenate-
lines: no-limit; in the lower half, any number of lines ending 

with a hyphenation could follow one other, whereas in the upper half, 
the maximum number of hyphenations is 1 

(prince-hyphenate-lines:1;)

Figure 4: Rendering of bleed, marks and crops by PR ( foreground) and 
AH (background); although the trimmed page size is identical, the 
untrimmed size differs, just as the visualization of marks and crops

Table 4: Excerpt of test results for fragmentation options,  
for more detailed descriptions cf. Götz (2014)

Analysed and tested new features 
of  CSS3 for fragmentation options

PR AH

Page, column and area fragmentation ○(1) ●
Hyphenation ◒(2) ◒(2)

Line break ○ ○
Word break ○ ●
Fragmentation settings for footnotes ○(3) ○

Legend: ● full support, ◒ partial support, ○ no support 
(1) Instead of the CSS3 break-before/-after commands, 

the CSS2.1 properties page-break-before/-after 
could be used to define page breaks

(2) Proprietary functions to influence hyphenation: prince- 
hyphenate-lines, prince-hyphenate-before, 
prince-hyphenate-after

(3) Workaround to define fragmentation for footnotes with 
prince-footnote-policy

Table 5: Excerpt of test results for printing and distribution settings, 
for more detailed descriptions cf. Götz (2014)

Analyzed and tested new features 
of  CSS3 for settings for printing 
and distribution

PR AH

Bleed [d] ● ●
Marks [d] ● ●
Color settings and color management ○(1) ●
Image resolution ◒ ◒

Legend: [d] definition, ● full support, ◒ partial support,  
○ no support
(1) PR uses the proprietary command cmyk() to define 

CMYK colors instead of the one specified by the  
W3C (device-cmyk())



68 c. Götz, u. nikolAus  –   J. Print mediA technol. res. 5(2016)1, 61–71

Fortunately, both rendering engines offer full sup-
port of  all these new CSS3 selectors (Table 6), which 
facilitates the formatting of  somewhat irregular but 
nonetheless recurring structures like, for instance, 
the odd-numbered rows of  a table, which can now be 
addressed directly using tr:nth-child(odd) without 
recourse to inconvenient attribute definitions such as 
<tr attr="odd">. 

This further improves the media-independent separa-
tion of  content and layout between the XML file and 
the CSS document.

4. Discussion

The aim of  the present study was to test the current 
implementation status of  CSS3 features that are needed 
for the formatting of  XML-based print layouts in pro-
fessional state-of-the-art rendering engines. In order 
to do this, a test document has been developed that 
contains the specific semantic elements of  complex 
textbooks and other non-fiction books (only Latin char-
acters). This book has been formatted using CSS3 and 
then rendered by the two state-of-the-art engines PR 
and AH.

The high potential of  the new CSS3 features specifica-
tion for a direct generation of  print layouts from XML 
source documents becomes apparent if  one considers 
the multitude of  additional rules, functions, properties, 
values and selectors that have been described above. 
In principle, these new features could greatly enhance 
the efficiency of  cross-media workflows. Even today, 
most digital publications such as websites, e-papers or 
e-books are using (X)HTML and CSS as source data 
formats to specify content and design (Quin, 2014). 
If  print layouts could now be rendered from the same 
source documents as well, this would be another step 
towards a real single-source publishing, where a single 
media-independent file could be published on differ-
ent channels just by exchanging the CSS. Double work 
and deviating processes for print layouts could thus be 
reduced.

This is not a mere future scenario, but is already 
becoming a reality: since 2013, for instance, the O’Reilly 
Media publishing house is developing HTMLBook, 
which is supposed to become an open, XHTML5-
based standard for the authoring and production of 
both print and digital books (Kleinfeld, 2013). This ini-
tiative, however, is for the time being mainly focused 
on the semantic definition of  a basic “book” structure 
(Kleinfeld, 2016) instead of  the production of  printed 
books. Whether this or other (X)HTML-based data 
formats are suited for the systematic editing, structur-
ing and processing or typesetting data in a cross-media 
publishing workflow in conjunction with CSS3, needs 

further analysis. However, it has already been stated 
that CSS as a technology to format XML documents 
for print is starting to come at age (Quin, 2014), that 
even XSL-FO processor vendors are moving to also 
support CSS (Graham, 2014) and that CSS will supplant 
XSL-FO within the next few years in the world’s pub-
lishing houses (Kelly, 2015).

As for the situation today, the test results presented 
in this paper show that only less than a half  of  the 
new CSS3 features for print production are currently 
supported by YesLogic Prince and the Antenna House 
Formatter. This means that the test results are basically 
dissatisfying: for the time being, it cannot reasonably 
be expected that flawless CSS3 renderings of  complex 
XML documents for print layout can be achieved with 
the available technology. As it is often the case with 
formal languages, the implementation of  new lan-
guage features into the rendering engines is unable to 
keep pace with the language’s specification process (in 
the context of  an automatic generation of  accessible 
publications, cf. Nikolaus (2010)).

Furthermore, the test reveals fundamental differences 
between the rendering results of  both engines. Not only 
that both support only a limited number of  the new 
CSS3 features, but also, these feature subsets are not 
identical. Some features are supported by both renderers, 
but the rendering results are nonetheless different and 
the same CSS instruction thus results in differing print 
layouts. Besides, the analyses show that both renderers 
add non-standard, proprietary functionality to the defi-
nitions of  the W3C CSS specification. While this may 
be helpful in some cases where complex print layouts 
might not have been rendered otherwise, the proprie-
tary functions may require additional efforts and appli-
cation testing. Because renderer-specific approaches do 
not validate against the W3C’s CSS specification, it can-
not be checked automatically and is not interchangeable 
with other XML rendering solutions. While this might 
not be a problem as long as the print production takes 
place in a controlled, in-house software environment, 

Table 6: Excerpt of test results for selectors,  
for more detailed descriptions cf. Götz (2014)

Analyzed and tested  
new selectors of  CSS3 

PR AH

Attribute selectors ● ●
Pseudo class selectors ● ●
::marker, Pseudo element ● ●
E ~ F, Sibling selector ● ●

Legend: ● full support, ◐ partial support, ○ no support



c. Götz, u. nikolAus  –   J. Print mediA technol. res. 5(2016)1, 61–71 69

it might not be suitable for a distributed production or 
print-on-demand solutions. 

However, a continuous and dynamic development in 
the area of  XML-formatting with CSS can certainly be 
observed; CSS is attracting many more resources and 
developers than XSL-FO today (Quin, 2014, p. 261). 
Compared to the time of  testing, the YesLogic Prince ren-
derer, for example, got a major update to version 10, 
which (according to the release notes) offers many new 
properties and features for the formatting of  paged 
media with CSS3 (YesLogic, 2015b).

While the results presented in this paper do not allow 
any clear statements about the performance of  other 
rendering engines, the two renderers tested here are cer-
tainly among the leading tools in this field. Therefore, 

similar problems might be expected even if  other tools 
are used for the XML-to-Print rendering, but this also 
calls for further study. A similar test might also be inter-
esting for rendering engines like pdfChip by callas software 
(Callas Software, 2015) and pdfreactor by RealObjects 
(RealObjects GmbH, 2015), which are supposed to cre-
ate high-quality PDF suited for printing directly from 
(X)HTML.

Finally, it needs to be mentioned that the test docu-
ments used here were based on the Latin writing system 
only, so that the suitability of  CSS3 for the formatting 
of  print layouts for ideographic languages with a differ-
ent reading direction or for documents that use anno-
tations for pronunciation or meaning (like the Japanese 
furigana; cf. Sampson (1990, p. 190)) have to be ana-
lyzed separately.

5. Conclusions

The possibility to generate and format both print and 
digital layouts using only XML (or HTML) and CSS3 
could be the key to a significant simplification of 
cross-media publishing: the re-use or reprocessing of 
media-independent data in order to automatically gen-
erate websites, e-books, and well-designed and complex 
print layouts from the same media-independent data 
in a shorter time, with less effort and at reduced costs 
is an attractive prospect. The W3C standard CSS3 has 
the potential to make this vision come true. At present, 
however, our tests show that only few of  the corre-

sponding paged media features are currently supported 
by the leading rendering engines. For the time being, 
CSS3 can already be used to generate works of  fiction 
with a very simple semantic structure, but is not yet 
suited for the production of  complex non-fiction and 
text books. Somewhat better results can be achieved by 
using non-standard, proprietary features of  the respec-
tive rendering engines, thus adjusting the layout set-
tings. But this, of  course, contradicts the principle of 
a standards-compliant, media-independent and flexible 
production.

Acknowledgments

The authors would like to thank Franziska Bröckl, Amrah Gadziev, Cameron Kilborn and Nadia Nikolaus for fruitful 
discussions and proof  reading.

References
 
Antenna House, 2014. AH Formatter XSL/CSS Properties List. [online] Available at: <http://antennahouse.com/CSSInfo/
property.html> [Accessed 23 May 2015].

Bosak, J., 1998. Media-independent publishing: Four myths about XML. Computer, 31(10), pp. 120–122.

Callas Software, 2015. pdfChip. [online] Available at: <https://www.callassoftware.com/en/products/pdfchip>  
[Accessed 23 November 2015].

Crawford, W., 1994. Pages from the desktop: Desktop publishing today. Library Hi Tech, 12(3), pp. 101–119.

Ertel, A. and Laborenz, K., 2014. Responsive Webdesign: Anpassungsfähige Websites programmieren und gestalten. Bonn: Galileo Press 
(Galileo Computing).

Fellenz, G. and Fischer, T., 2013. Printlayouts mit CSS3. In: Proceedings of the tekom Jahrestagung 2013, Wiesbaden. [online] 
Available at: <http://tobias-bloggt.de/2013/11/21/printlayouts-mit-css3/> [Accessed 2 March 2016].

Goldfarb, C.F., 1990. In: Y. Rubinsky, ed., The SGML Handbook. Oxford: Oxford University Press.

Götz, C., 2014. CSS 3 zur Formatierung für XML-basierte Printlayouts. Master thesis. Hochschule für Technik, Wirtschaft und 
Kultur Leipzig.



70 c. Götz, u. nikolAus  –   J. Print mediA technol. res. 5(2016)1, 61–71

Götz, C. and Nikolaus, U., 2013. EPUB 3 on current e-readers – drawbacks and opportunities. In: N. Enlund and 
M. Lovreček, eds., Advances in Printing and Media Technolog y, Vol. XL, Proceedings of the 40th International Research Conference of 
iarigai, Chemnitz, 2013. Darmstadt: iarigai, pp. 327–336.

Graham, T., 2014. Formatting from XML. In: Proceedings of the XML Prague Conference, February 14–16 2014. [pdf] Prague: 
University of  Economics, Prague. Available at: <http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf> 
[Accessed 2 March 2016].

Harold, E.R. and Means, W.S., 2004. XML in a Nutshell. Sebastopol: O’Reilly Media, Inc.

Kelly, M., 2015. XSL-FO Is Dead, CSS Paged Media Is Prime Suspect. [online] Available at: <http://www.rockweb.co.uk/
blog/2014/06/xsl-fo-is-dead,-css-paged-media-is-prime-suspect/> [Accessed 2 March 2016].

Kleinfeld, S., 2013. The case for authoring and producing books in (X)HTML5. In: Proceedings of Balisage: The Markup 
Conference 2013, August 6–9 2013, Montréal. [online] Available at: <http://balisage.net/Proceedings/vol10/print/Kleinfeld01/
BalisageVol10-Kleinfeld01.html> [Accessed 2 March 2016].

Kleinfeld, S., ed., 2016. HTMLBook: Unofficial Draft 16 February 2016. [online] O'Reilly Madia, Inc. Available at:  
<http://oreillymedia.github.io/ HTMLBook/> [Accessed 2 March 2016].

Knuth, D.E., 1984. The TeXbook. Reading, Massachusetts: Addison-Wesley.

Lamport, L., 1994. LaTeX: A document preparation system: User’s guide and reference (2nd ed.). Reading, Massachusetts: 
Addison-Wesley.

Lie, H.W., ed., 2014. CSS Figures: Living Standard. [online] Available at: <http://figures.spec.whatwg.org/> [Accessed 28 June 2014].

Lie, H.W., ed., 2015. CSS Books: Living Standard. [online] Available at: <http://books.spec.whatwg.org/>  
[Accessed 13 May 2015].

Lie, H.W. and Day, M., 2005. Printing XML: Why CSS is Better than XSL. [online] Available at: <http://www.xml.com/
pub/a/2005/01/19/print.html> [Accessed 2 March 2016].

McKesson, N., 2012. Building Books with CSS3. [online] Available at: <http://alistapart.com/article/building-books-with-
css3> [Accessed 2 March 2016].

Meyer, E.A., 2012. CSS and Documents. [pdf] Sebastopol: O’Reilly Media, Inc. Available at: < http://uc.irpdf.com/uploads/
part1/CSS%20and%20Documents.pdf> [Accessed 2 March 2016].

Nikolaus, U., 2010. Accessibility and multi-channel publishing: Different aims, similar solutions? In: N. Enlund and 
M. Lovreček, eds., Advances in Printing and Media Technolog y, Vol. XXXVII, Proceedings of the 37th International Research Conference 
of iarigai, 2010, Montréal. Darmstadt: iarigai, pp. 13–22.

Ott, T., 2014. Crossmediales Publizieren im Verlag. Berlin/Boston: Walter de Gruyter GmbH.

Quin, L., 2013. Re: [xsl] xsl 2.0? [online] Available at: <http://www.biglist.com/lists/lists. mulberrytech.com/xsl-list/
archives/201311/msg00014.html> [Accessed 2 March 2016].

Quin, L., 2014. Publishing in style with XML: Or, Why it’s not XSL-FO. In: Proceedings of the XML Prague Conference,  
February 14–16 2014. [pdf] Prague: University of  Economics, Prague. Available at: <http://archive.xmlprague.cz/2014/files/
xmlprague-2014-proceedings.pdf> [Accessed 2 March 2016].

RealObjects GmbH, 2015. PDFreactor. [online] Available at: <http://www.pdfreactor.com/> [Accessed 2 Mach 2016].

Sampson, G., 1990. Writing Systems: A Linguistic Introduction. Stanford: Stanford University Press.

W3C, 2011a. CSS Color Module Level 3. [online] Available at: <http://www.w3.org/TR/2011/REC-css3-color-20110607> 
[Accessed 12 June 2014].

W3C, 2011b. CSS Multi-column Layout Module. [online] Available at: <http://www.w3.org/TR/2011/CR-css3-
multicol-20110412/> [Accessed 11 June 2014].

W3C, 2011c. Selectors Level 3. [online] Available at: <http://www.w3.org/TR/2011/REC-css3-selectors-20110929/> 
[Accessed 18 March 2014].

W3C, 2012. CSS Image Values and Replaced Content Module Level 3. [online] Available at: <http://www.w3.org/TR/2012/
CR-css3-images-20120417/> [Accessed 12 June 2012].

W3C, 2013a. CSS Fonts Module Level 3. [online] Available at: <http://www.w3.org/TR/2013/CR-css-fonts-3-20131003/> 
[Accessed 22 May 2015].

W3C, 2013b. CSS Page Floats. [online] Available at: <http://www.w3.org/TR/2013/ED-css3-gcpm-20130924/>  
[Accessed 30 June 2014].



c. Götz, u. nikolAus  –   J. Print mediA technol. res. 5(2016)1, 61–71 71

W3C, 2013c. CSS Paged Media Module Level 3. [online] Available at: <http://www.w3.org/TR/2013/WD-css3-
page-20130314/> [Accessed 18 March 2014].

W3C, 2013d. CSS Text Module Level 3. [online] Available at: <http://www.w3.org/TR/2013/WD-css-text-3-20131010/> 
[Accessed 9 June 2014].

W3C, 2014a. CSS Backgrounds and Borders Module Level 3. [online] Available at: <http://www.w3.org/TR/2014/WD-css3-
background-20140204/> [Accessed 20 May 2015].

W3C, 2014b. CSS Color Module Level 4. [online] Available at: <http://dev.w3.org/csswg/css-color/> [Accessed 12 June 2014].

W3C, 2014c. CSS Fragmentation Module Level 3. [online] Available at: <http://www.w3.org/TR/2014/WD-css3-
break-20140116/> [Accessed 29 May 2014].

W3C, 2014d. CSS Generated Content for Paged Media Module. [online] Available at: <http://www.w3.org/TR/2014/WD-css-
gcpm-3-20140513/> [Accessed 26 May 2015].

W3C, 2014e. CSS Line Grid Module Level 1. [online] Available at: <http://www.w3.org/TR/2014/WD-css-line-
grid-1-20140403/> [Accessed 12 June 2014].

YesLogic, 2015a. Prince: CSS Properties. [online] Available at: <http://www.princexml.com/doc/9.0/properties/>  
[Accessed 2 March 2016].

YesLogic, 2015b. Release Notes for Prince 10. [online] Available at: <http://www.princexml.com/releases/10/>  
[Accessed 2 March 2016].




