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1. Introduction

Despite its high image quality, gravure printing was 
considered conservative, not very innovative and less 
profitable compared to flexographic printing a few 
years ago. This opinion about gravure printing has 
recently changed thanks to many technological inno-
vations (Anon., 2006). Innovative processes of auto-
mation of prepress preparation, as well as the faster 
process of engraving the printing plates and the shorter 
preparation time of the gravure printing press, have 

greatly increased productivity and cost-effectiveness. 
In Stefanyshena and Zorenko (2020), modern trends 
in the development of gravure printing are considered 
based on the analysis of patent sources and scientific 
and technical literature regarding the technologies of 
manufacturing printing plates, printing equipment, 
consumables and areas of application in different 
geographical regions. Due to its unique reproduction 
properties, gravure printing is primarily used for 
high-quality illustrative products, such as labels, pack-
aging, and advertising catalogues. This specialization 
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Abstract

The article presents a mathematical model of imprint formation in gravure printing on cardboard substrates. The 
focus is on ensuring imprint quality by balancing interactions between the structural subsystems of the printing 
press, specifically the plate cylinder, ink, printing system, and substrate. Using mathematical models, the behavior 
of the printing substrate and printing plate elements system is investigated by determining the stress–strain state 
of the contacting elements during imprint formation. The study describes the ink transfer process from the gravure 
printing plate to the substrate, considering factors such as substrate weight and structure, technical characteristics 
of the printing press, and its structural subsystems. The method for calculating printing pressure is also examined. 
At higher printing speeds and pressures, cylinder coatings can be damaged, leading to overheating and cracking, 
which necessitates cylinder cooling. Increased press width requires greater pressure to achieve the desired con-
tact area, causing cylinder deflection and uneven pressure distribution, affecting image quality and color matching. 
Morphological analysis confirmed the significant influence of the printing and inking systems of web-fed gravure 
presses on pressure distribution in the printing zone. The stress–strain state of objects in direct contact is a key fac-
tor in imprint quality. Therefore, studying the micromechanics of contacting surfaces during printing is crucial for 
high-quality images. Mathematical modeling allows calculation and control of the load in the contact zone between 
the substrate and ink-filled printing elements, ensuring the quality of gravure imprints on various materials.
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makes gravure printing a focal point for researchers, 
especially in understanding the factors that influence 
the quality of printed images.

A detailed analysis of the basic principles of gravure 
printing is given in Szentgyörgyvölgyi (2016). In par-
ticular, special attention is paid to the transfer of ink 
at high speeds (in 1 – 3 ms), because, with the help of 
gravure printing, a much larger amount of ink can be 
transferred to the imprint than in most other printing 
technologies, thereby ensuring the reproduction of a 
wide range of tones.

Gladwell (1980) emphasizes that the ideal substrates 
for gravure printing are paper, cardboard, and film 
materials with a smooth surface (i.e., coated, super-
calendered) since effective ink transfer depends on 
the full contact of the printing plate with the printing 
substrates. In Nandakumar and Paramasivam (2006), 
the authors note that gravure printing can reproduce 
images with a high screen ruling: 100, 120, 150, 175, 
225, and 300 lines/cm. Printing using 175 lines/cm is 
popular.

As is known, the printing section of the gravure print-
ing press consists of an ink supply system, a gravure 
and impression cylinder and a blade (Kipphan, 2001, 
p. 48). For high-speed printing presses, the best 
option is to use a closed ink system, thanks to which 
the evaporation of the solvent is reduced, in contrast 
to an open system, where there is no control of the 
evaporation of the solvent and the ink does not mix 
well. The closed system also uses ink viscosity con-
trol. In this system, every time the ink is returned 
from the ink fountain, it is filtered, and a solvent is 
added to maintain the desired viscosity of the ink. 
In addition to this closed ink application system, a 
spray system is also used for very high-speed print-
ing presses, where an ink pump feeds ink to nozzles 
directed towards the cylinder. The surface of the noz-
zle always remains wet and never dries out. This sys-
tem is also completely closed.

Gravure printing presses use several different designs 
of doctor blade, which is set at a certain angle (55 – 65 
degrees) and removes the remaining ink from the 
non-image areas of the printing plate. 

A steel printing cylinder is usually made with a hard 
rubber coating that can withstand high pressure. 
The rubber coating has a thickness of 12 to 20 mm. 
Its hardness ranges from 60 to 100 according to 
Shore А, depending on the type of the printing sub-
strate. The amount of pressure in the printing zone  
(up to ~ 500 N/m²) depends on the characteristics of 
the elasticity of the cylinder coating, the properties 
of the substrate, and the type of image being printed.

One of the challenges in ensuring the quality of 
imprints is the well-established balance of the inter-
action of the structural subsystems of the printing 
press, in particular plate cylinder and the inking and 
printing units with the substrate. It is known that the 
design of the impression cylinder significantly affects 
the deformation of its coating during printing. It was 
investigated that with constant deformation of the 
coating of the impression cylinder, the internal tension 
decreases and a relaxation phenomenon is observed, 
which leads to a gradual decrease in pressure in the 
printing area (Davies, et al., 2006). The larger the 
width of the printing press, the more pressure must 
be applied to obtain the desired width of the printing 
area. Significant pressure on the edges of a large-di-
ameter cylinder causes deflection of the cylinder and 
resulting uneven distribution of pressure in the print-
ing area. In such cases, there is a difference in image 
quality across the printing width and problems related 
to the passage of the reel substrate, which affects the 
quality of the printed image. Due to the high speed of 
gravure printing presses, ink transfer takes 1–3 ms. In 
this short time, the ink must be uniformly transferred 
from the small cells of the printing plate to the surface 
of the substrate (Davies, et al., 2006).

Therefore, it is relevant to study the behaviour of the 
the behavior of the printing substrate and printing plate 
elements system, to determine the factors affecting 
the stress–strain state of the contacting elements 
during the formation of an imprint in gravure print-
ing presses. 

The work reported here is aimed at studying the 
process of ink transfer from the gravure printing 
plate to the printing substrate using mathematical 
modelling to assist in ensuring the quality of the 
obtained imprints.

2. Objectives and methods of research

The objective of the research was to improve the pro-
cess of obtaining imprints on a BOBST Lemanic 820 
Riviera gravure printing press on cardboards with a 
grammage of 200 to 500 g/m² at a printing speed of 
v = 250 m/min. It was assumed that the plate cylin-
der should have the same diameter along the entire 
length, allowable micro-uniformity of 0.01 to 0.02 mm, 
a certain stiffness and maximum deflection within 
0.05 to 0.1 mm. 

The plate cylinder is made of steel, with a top coating 
of nickel, copper, and chrome. Thus, the tonal cover-
age of the image on the imprint from the lightest to 
the darkest areas is determined by different depths, 
as well as  the distances between the screen cells. The 
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impression cylinder is covered with elastomer with a 
thickness of 30 to 40 mm. The thicker and more elastic 
the coating of the impression cylinder, the lower the 
pressure over the total contact surface during print-
ing. When the cylinder coating thickness decreases, 
the required printing pressure increases. 

The ratio of screen cells and the distances between 
them (cell walls) is an important parameter that 
affects the volume of the cell, the quality of imprints 
and the mechanical stability of the plate. The width of 
the cell wall affects the ability of the engraved surface 
to transfer ink. If the width of the cell wall between 
cells is large, then, when printing, a drop of ink must 
move across the width between cells when contacted 
with the substrate, which has no ink, to form a contin-
uous image. The consequence of this failing to occur is 
results in unevenness of the image, on which it is then 
possible to see the screen structure. 

The area occupied by screen lines is the absorption 
area of some part of the image itself. Accordingly, the 
wider the screen cell wall separation, the larger the 
area of the reproduced image is lost, and it is printed 
with certain defects. These defects, however, are 
almost invisible without special devices. This happens 
because the screen lines are so small in width (with a 
ratio of cells to cell separation greater than 1:2) that 
they cannot be noticed with the naked eye. The screen 
line carries a mechanical load. To provide it with the 
necessary mechanical stability, the minimum possi-
ble width of the inter-cell wall should be provided. 
Therefore, screens with a different width ratios of 
transparent and opaque elements in the range from 
1:1 to 1:9 are used.

For the BOBST Lemanic 820 Riviera press considered 
in this study, the ratio of the width of print element 
and non-print element on the printing plate was 1:3. 
It should be noted that the researchers recommend 
creating wider lines on the printing plate (1:5; 1:6; 1:7; 
1:8; 1:9) with increased printing speed to increase the 
durability of the plate.

It is known that for a square screen with a different 
ruling, but the same ratio of cell walls and cells, the 
area occupied by the cells in percentage terms, is the 
same, and the volume of the cells depends only on the 
depth of the cell and the angle of inclination of the 
edges of the cell. At higher printing press speeds and 
high pressure, the cylinder coating is severely dam-
aged, heated and often cracked. Therefore, in many 
solutions to the problem in the printing press, the cyl-
inder is cooled. 

Mathematical modelling methods were used for theo-
retical research into the abovementioned phenomena.

3. The proposed model and its discussion

Let us consider an example of calculating pressure 
when printing on a gravure printing press (Figure 1).  

22 D F

D F

R Rb
R R

l
=

+
 [1] 

According to Equation [1], for the radius of the plate 
cylinder RF = 318 mm and the radius of the impres-
sion cylinder RD = 180 mm, the width of the printing 
contact area 2b will be 15.2      mm at deformation (com-
pression) of the coating λ = 0.5 mm and 21.4 mm at  
λ = 1.0 mm. The relative deformation, i.e. applied strain 
ε, of the cylinder coating during printing is determined 
by the Equation [2], where h1 is the coating thickness  
(see Figure 1): 

H
lε =  [2] 

Hooke’s purely elastic law does not work in practice 
between the stress of the load and its deformation 
(where the stress is directly proportional to the rela-
tive deformation of the material). 

According to the equation of Tir (1965):

( )mEσ ε=
1

 [3]

 
where σ is the stress, m is the power factor, which 
depends on the material properties, and E is the elastic 
modulus of the material. ε is the relative strain.
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Figure 1: Scheme for calculating the pressure when 
printing by the gravure printing method where RD is the 
radius of the impression cylinder, RF is the radius of the 

plate cylinder and l is the deformation
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In the article (Raske, Hewson, Kapur and Boer, 2017), 
the authors provide a heterogeneous model for the for-
mation of gravure imprints with discrete cells and par-
tially consider the conditions of contact of the printed 
roll material with the printing plate. However, they 
focus their research on the relationship between the 
properties of inks and the shape of the coating layer. 
However, they do not detail the stress-strain state 
of the elements of the printing system. Studies (Tir, 
1965) have shown that with constant deformation of 
the coating of a printing cylinder, the internal stress 
decreases and the relaxation phenomenon is observed, 
which leads to a gradual decrease in the pressure of 
the coating in the printing zone and stresses in it.  
The pressure concerning load relaxation is calculated 
using Maxwell’s equation: 

t
TP P e
−

= 0  [4]

where P is the printing pressure when the cylinder 
coating operates with a constant deformation, P0 is 
the printing pressure when the coating operates with 
a variable deformation, e is the natural logarithm base, 
t is the duration of the printing pressure, T is the relax-
ation time corresponding to the time of change in the 
cylinder coating stress.

Depending on the pressure force in the printing area, 
the width of the contact strip between the print-
ing plate and the coating of the impression cylinder 
ranges from 10 to 25 mm (Chubak and Uhryn, 2023). 
The larger the width of the printing press, the more 
external force must be applied to provide the neces-
sary contact pressure to obtain the required width 
of the printing area. In practice, this force is often 
referred to as “pressure” because it is adjusted via a 
hydraulic pressure mechanism, but the resultant is 
nonetheless a force. However, due to the force being 
applied to the ends of the cylinder, significant pres-
sure on the end edges of a large-diameter cylinder 
causes deflection of the cylinder and hence uneven 
distribution of pressure in the printing area. In such 
cases, there is a difference in image quality across the 
print width and problems related to the passage of the 
web (printing substrate), which affects the accuracy of 
both colour matching and image alignment.

Modern presses use pressure-compensated impres-
sion cylinders, which consist of a core with bearings 
and a rotating shell with a skin, where two independ-
ent sources of force significantly affect the deflection 
curve of the cylinder: one of them acts on both edges, 
the other on the trunnions. Axial pressure is transmit-
ted to the rotating shell through bearings located in 
the middle of the impression cylinder. By changing the 
hydraulically generated forces, the necessary linear 
profiles of optimal pressure can be obtained to ensure 

consistent quality printing and correct, precise trans-
port of the reel substrate through the printing and ink-
ing units of the printing press. There are well-known 
NIPCO cylinders that allow precise pressure to the 
plate cylinder to be set within the printing area over 
its entire width. Such cylinders consist of a fixed axis, 
on which a special steel cape covered with elastomer 
with a hardness of 80÷850 shore A is placed. The elas-
tomeric coating makes it possible to ensure the same 
uniform pressure along the entire length of the print-
ing area and ensure the proper quality of imprints.

The conducted morphological analysis of the structure 
of the printing and inking units of web-fed gravure 
printing presses confirmed the significant influence 
of their design on the distribution of pressure in the 
printing area and ensuring the appropriate quality of 
imprints (Chubak and Uhryn, 2023).

As previously mentioned, one of the main quality 
parameters is the full correspondence of the imprint 
to the original, including the geometric accuracy of 
image reproduction. One of the determining factors 
in this regard is the stress–strain state of the objects 
in direct contact during the printing process. The 
macro mechanics of the contact of cylindrical bod-
ies, including those with an elastomeric or other 
nonlinearly elastic coating, have been studied quite 
fully, starting with the classic works of Hertz (1881; 
1882), Boussinesq (1885) and Reynolds (1876) and 
mentioning several reviews of individual aspects of 
contact problems (Sulym, 2007; Kozachok, Martyniak 
and Slobodian, 2018; Sulym and Piskozub, 2004; 
Goryacheva, 1998; Martynyak and Serednytska, 2017; 
Ballarini, 1990; Gladwell, 1999; Johnson, 1985; Nemat-
Nasser, 1999; Batra, Levinson and Betz, 1976; Bentall 
and Johnson, 1967). 

However, macro mechanics of contact do not provide 
an opportunity to control the micro properties of con-
tacting elements in the printing process, in particular 
raster elements, the size of which are orders of mag-
nitude smaller than the size of the area of direct con-
tact between the impression cylinder and the printing 
substrate. If there is a need for precision micro print-
ing, it is necessary to consider the micromechanics of 
contact.

The area of direct contact S is surrounded by a dashed 
frame in Figure 2. To consider the features of mechan-
ical contact in the direct printing area, it is enough to 
consider the contact problem of two half-spaces with 
different mechanical properties, at the contact bound-
ary of which there are inhomogeneities, the presence of 
which significantly disturbs the stress-deformed state 
in their vicinity (Figure 3) (Muskhelishvili, 1953; Sulym, 
2007; Sulym and Piskozub, 2004; 2017; Gladwell, 1980; 
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1999; Johnson, 1985; Nemat-Nasser, 1999; Sulim and 
Piskozub, 2008; Boussinesq, 1885; Hertz, 1881; 1882).

We will consider the quasi-static contact of the half-
space S2 with the rigid S1 base (Figure 3). We assume 
that the stress–strain state in the centre of the contact 
area for reasons of symmetry corresponds to the con-
ditions of plane deformation. Shallow hole cells with 
a length of 2a and a height of h(x) are located at the 
contact boundary of the base   with the substrate with 
a regular spacing period ( )d a h a d< 2 ,2 .

R2

R1

R0

S

H

 
 
 
 
 

Figure 2: Model of contact of impression cylinders with 
the printing substrate in the gravure printing process  

(R0- radius of the plate cylinder , R1 and R2 - radius 
of the impression cylinder with and without coating, 
H - thikness of printing substrate, S - zone of direct 

microсontaсt) 
 

h 2a
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Figure 3: Micromechanical contact of raster cells with 
the substrate in the direct printing area (P – external 

pressure, 2a – cell width, h – cell depth, S – area of 
direct contact)

Boundary conditions in the areas of direct contact S1 
and S2 expressed in spatial tensor components:

, 0, 1, 2,
2
da x nd n≤ − ≤ = ± ± …  [5]

( ) ( )0 0, 0 0xy yx u xσ ± = ± =  

and in the areas of contact of the cell material with S2: 

, 0, 1, 2,x nd a n− < = ± ± …  [6]

( ) ( ) ( )0 0,    0xy yyx x P xσ σ± = ± = −  

where P(x) is the contact pressure caused by the pres-
ence of a liquid filler in the cells. 

According to the methodology (Muskhelishvili, 1953; 
Sulym, 2007; Kozachok, Martyniak and Slobodian, 
2018; Sulym and Piskozub, 2004; 2008; 2017; 2021; 
Piskozub, 2020; Pasternak and Sulym, 2011), the pres-
ence of thin inhomogeneities (cells) is modelled by an 
unknown jump of stresses and strains on their middle 
surface

( ) ( )( ) ( ) ( )( )
( ) ( )

1 1 2 2

1 2 ,
yy xy yy xyi i

f if

σ ς σ ς σ ς σ ς

ς ς

− − − =

−

 [7]

( ) ( )( ) ( ) ( )( )
( ) ( )

1 1 2 2

3 4 ,
y x y yu i u u i u

f i f

ς ς ς ς

ς ς

′ ′ ′ ′+ − + =

+

 

( )      0, 1, 2,x nd nς = + = ± ± …  

Here σyy1, σxy1 and σyy2, σxy2 denote the normal and tan-
gential stresses in the contact zone of the half-spaces 
S1 and S2, respectively. u'

y1, u'
x1 , u'

y2 , u'
y2 denotes the 

respectively strains. 

And due to boundary conditions (5), (6)

( ) ( ) ( )      1, 2, 3, 4j jf f x jς = =  [8]

( ) ( )0     1, 2, 3, 4jf jς = =  at

; \ ;x d d a a∈ − −        

In addition, we have

( ) ( )0     1,2,3jf jς = =   on the entire axis [9]

( ): ;Ox x ∈ −∞ ∞

Taking into account the periodicity of the problem, 
the field of stresses and displacements can be repre-
sented in the form of a superposition (Muskhelishvili, 
1953; Kozachok, Martyniak and Slobodian, 2018; 
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Martynyak and Kryshtafovych, 2000; Martynyak and 
Serednytska, 2017):

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

0 0

,   ˆ ˆ

yy xy yy xy

n n
yy xyn

z i z z i z

z i z z S

σ σ σ σ

σ σ
∞

= −∞

− = − +

− ∈∑
 [10]

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

0 0

ˆ ˆ

y x y x

n n
y x

n

u z iu z u z iu z

u z iu z
∞

= ∞

+ = + +

+∑
 

 

where ( ) ( ) ( ) ( )0 0 0 0, , ,yy xy y xz z u z u zσ σ  are components 
of the stress-strain state known from the homoge-
neous problem of contact of two half-spaces S1 and 
S2 without inhomogeneities in the contact area, and 

( )( ) ( )( ) ( )( ) ( )( ),ˆ ˆˆ ˆ, ,n n n n
yy xy y xz z u z u zσ σ  are the unknown per-

turbations from jumps, ( ) ( )1, 2, 3, 4jf jς =  caused by 
the presence of hole-cells. 

The components of the stress tensor under plane 
deformation conditions can be expressed through a 
Airy function U(x,y) (Muskhelishvili, 1953; Sulym, 2007; 
Kozachok, Martyniak and Slobodian, 2018)

2 2 2

2 2, ,xx yy xy
U U U
x y x y

σ σ σ∂ ∂ ∂
= = = −

∂ ∂ ∂ ∂
  [11]

which makes it possible to write the equilibrium equa-
tion in the form of a biharmonic equation 

  ΔΔU = 0           [12]

Using the well-known presentation of the biharmonic 
function through the Kolosov-Mushkelishvili com-
plex potentials ( ), ( )z zΦ Ψ  (Muskhelishvili, 1953) 
and the methodology of works (Muskhelishvili, 1953; 
Sulym, 2007; Sulym and Piskozub, 2004; 2008; 2017; 
2021; Piskozub, 2020; Martynyak and Kryshtafovych, 
2000; Martynyak and Serednytska, 2017; Pasternak 
and Sulym, 2011) the components of the stress tensor 
and the displacement vector in each of considered Sk 
for a plane problem can be written using two complex 
potentials

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )

( )

,

2

; 1, 2 ,

yyk xyk k k

k k

k xk yk k k

k k k

k

i z z

z z z

G u iu z

z z z z

z x iy S k

σ σ

κ

− = Φ + Φ +

′Φ + Ψ

′ ′+ = Φ −

′Φ − Φ − Ψ

= + ∈ =

  [13]

which are holomorphic in these half-planes and going 
to zero at infinity.

We define the functions Φ1 (z) in the upper half-plane 
and Φ2 (z) in the lower half-plane as follows (analytical 

continuation through unloaded sections) (Muskhelishvili, 
1953; Sulym, 2007; Sulym and Piskozub, 2008):

( ) ( ) ( ) ( )
( )S ; , 1, 2; 3

k k kk

l

z z z z z

z k l l k

Φ = − − −

∈ = = −

Φ Φ Ψ  [14]

From here, replacing  with –z x iy z x iy= + = , its 
complex conjugate, we get 

( ) ( ) ( ) ( )
( )S ; 1,2

k k k k

k

z zz z z

z k

′Ψ = −Φ − Φ − Φ

∈ =

 [15]

Substituting this Equation [15] into Equation [13], and 
assuming that it is loaded by a field of uniform stresses 
at infinity yy Pσ ∞ = − , we get

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

'

' '

'

,     

2

3 ;
4

yyk xyk

k k k yy k

k xk yk

k
k k k k yy

z i z

z z z z z S

G u z

z z

z

z zz

u z

σ σ

σ

κκ σ

∞

∞

− =

Φ − Φ + − Φ + ∈

 + = 
−

Φ + Φ − − Φ −

 [16]

 
Here Gk – shear modules, vk – Poisson's coefficients, 
such that κk = 3 – 4vk – Mushelishvili’s constants for 
plane deformation of half-space materials Sk. Passing 
in [16] to the limit at 𝑧 → 𝑥, taking into account the
fact that ( ) ( )lim 0z x z z z→  − Φ =  

′ , and also that if 𝑧 goes 
to the O𝑥 axis from the lower (respectively, upper)
half-plane Sk, then z  goes to the same point on the O𝑥
axis, only moving from the upper (lower) half-plane, 
we get

( ) ( ) ( ) ( ) 2
,

1yyk xyk k kx i x x x kσ σ ±  
− = Φ − Φ =  

 
  [17]

( ) ( )( )

( ) ( )

2

2
,

1

k xk yk

k k k

G u x iu x

x x kκ ±

′ ′+ =

 
Φ + Φ =  

 


 [18]

 
Values in curly brackets mean that in equations [17], 
[18] and similar ones, the upper sign corresponds to 
the value 𝑘 = 2; the lower one is 𝑘 = 1. Applying the
methodology of works [9-11, 21] can be obtained

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )
( ) ( )

( ) ( )

'

' S

ˆ

2

2 , 

2

2

2

ˆ

 

ˆ

      

ˆ

 

n n
yy xy

k k

k

n n
k y x

k k k

k

z i z

z z nd

z z nd z

G u z iu z

z z nd

z z nd z z

σ σ

κ

− =

Φ − Φ + +

− − Φ

− =

Φ + Φ + −

− − Φ ∈

 [19]
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where 

( ) ( ) ( )

( )

3
4

1 2

1 2

1
d

S 1, 2 ,

1 1
2 2

k a nd

k
n a nd

k

f t
z t
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z k

G G

π

κ κϒ

− +∞

= − ∞ − +

−
Φ = −

ϒ −

∈ =

+ +
= +

∑ ∫
 [20]

 
Using the summation equation

1 ctg
n

z
z nd d d

π π∞

= −∞

 =  −  
∑  [21]

 
we will rewrite the potentials [19] in the form

� � � � � � � �

� �

3
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1
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k
a

k a

k

t z
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d d
z S k

�

�

�

� �
� �

� �

�
 [22]

 

Then the contact pressure defined by Equation [6] can 
be calculated using the Equation [23]

� � � �

� � � �
4

, 0

�2 ctg d

yy

a

yya

P x x
t z

f t t
d d

�

�
�

�

�

� � �

�
� � ��

 [23]

from which it is easy to obtain the singular integral 
equation with the Hilbert kernel to determine the 
unknown jump 𝑓4(𝑥)

� � � � � �� �4

�2 ctg
a

a

t z
f t dt P P x

d d
�

�

�
� ��  [24]

 
To solve Equation [24], it is convenient to use the sub-
stitution of variables

tg ,   tg ,   

tg ,    tg

x t
d d
a b

d d

π πξ η

π πα β

   = =   
   
   = =   
   

 [25]

 
Then Equation [24] transforms into a Equation [25] 
with a Cauchy-type kernel
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∫
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which has a solution 
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4 2 2 2
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α α
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ξ
π α ξ

α η η
η ξ ξ
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−
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 [27]
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F
f

α α

α α

ξ
π α ξ

α η η
η ξ ξ

η ξ− −

=
−
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∫ ∫

 

Taking into account that at the ends of the cells 
( ) ( ) ( ) ˆ    0, 1, 2,n
yu x na h n± = − = ± ± … , we have an addi-

tional condition

( )4 d 0f
α

α
ξ ξ

−
=∫  [28]

The pressure P(𝜉) can be found using the equa-
tion of state of a compressible barotropic fluid 
(Muskhelishvili, 1953; Sulym, 2007; Kozachok, 
Martyniak and Slobodian, 2018)

0

hP
B

hV e V=  [29]

where 𝑉0 = 2ah is the initial volume of a rectangular 
cell in profile, 𝑉h is the volume of liquid per unit cell 
length in the transverse direction, and B is modulus of 
volume elasticity of liquid. 

From Equation [27] taking into account Equation [26], 
we get the solution

( ) ( )
( )

2

4 2 2 2

1
,    

2 1
hd P P

f
ϒ ξ α

ξ ξ α
π ξ α ξ

− +
= ≤

+ −
 [30]

 
Integrating Equation [30], we get increase in cell 
volume

( ) ( )

( )
4

2 2

2
arcth

2 1
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u f d

d P P
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−
∆ = =
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 − +
 + 

≤

∫  [31]

 
Then the contact pressure of the surfaces can be calcu-
lated from the equation

� �

� �

 [32]

Equation [29] for determining the fluid pressure Ph 
after applying the substitution of variables [27] and 
taking into account

� �
 [33]
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ties of materials of half-spaces and fluids under external 
load in the range 0 < P < P∞, where

( )

( )
( ) ( )

( )

1
2

2

2

arctg

ln ln 1
4 arctg

ln 1

2

ln 1

P B

h
d

α

α
α

α α

α α

−
∞

 
 
  = ϒ +π +  +  

+ +  
  

π

+ +

[35]

i.e. the load at which the contact of the border of the 
half-space S2 with the base of the cells at depth y = –h.

4. Conclusions

Thus, taking into account the theoretical principles of 
macro- and micromechanics of the contact of system 
elements in the gravure printing process, it is possible 
to control their properties. Using the method of mathe-
matical modelling, it is possible to calculate and control 
the load in the contact area of the printing substrate and 
printing plate with ink-filled printing elements, ensur-
ing the quality of imprints on various materials, taking 
into account their structure and thickness.

takes the form

( )

( ) ( )( ) ( )2

4

ln 1 2 arctg 2 arctg 0

hP
hB

d P P
e

h hα α α

 ϒ −
−  

 

+ + ⋅ − ⋅ =

 [34]

 
This equation does not have an analytical solution, so 
it should be solved by numerical methods. It is worth 
noting that the less compressible the liquid is, the less 
the contact pressure changes over the entire contact 
surface, including the intervals of direct contact of the 
half-spaces. The direction in [34] of the modulus of 
volume elasticity of the liquid to infinity (incompress-
ible fluid, B → ∞ ) leads to the result that the pressure 
of an incompressible fluid is equal to the applied load  
P(𝑥) = P and therefore, the pressure over the entire sur-
face of the body is also constant and equal to the applied 
load. That is, there is no effect of the presence of hole 
cells as perturbations of the stress-strain state in the 
contact area.

With the help of the method, it is possible to carry out 
several numerical calculations for various parameters of 
changing the size and location of the cells on the print-
ing plate, as well as changes in the mechanical proper-
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