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1. Introduction

The subject of one of the last papers in this series was the 
two-dimensional registration error, which consists of the 
longitudinal and lateral registration errors (Brandenburg, 
2023). A block diagram had been developed in which 
the mass flow is closely linked to the generation of the 
longitudinal registration error, while the lateral one was 
independent of the mass flow. This simplification does 
not correspond to physical reality, because changing web 
tensile forces influence the behavior of the side edges. 
In the contribution presented here, this dependency is 
taken into account in an extended model. 

1.1 State of the art

In Brandenburg and Klemm (2016), Shelton’s beam 
model (Shelton, 1968) was extended to variable web 
forces. Variable web forces are caused, apart from 
technological influences, by changes in the circumfer-
ential speeds of rollers that are provided for the trans-
port and processing of the moving web. The equation 
of the beam bending and the so-called transport equa-
tions were linearized. Then additional dynamic terms 
were found that show the influence of a variable web 
tensile force during translational or rotational move-
ment of a control roller as well as when a web offset 

or an angle change was impressed at the entrance to 
a system.

The numerical example from Brandenburg and Klemm 
(2016), Figure 6.1.2, led to plausible values of the lateral 
web deviations. However, it was not possible to ver-
ify these results by measurements because no printing 
press was available. Nevertheless, due to the mentioned 
plausibility, it makes sense to create a system plan sup-
plemented by the retroactive effect, with the help of 
which numerous realistic simulations are possible. As in 
Brandenburg and Klemm (2023), a Bernoulli web is used.

2. Block diagram of the Bernoulli web

2.1 System of notation

In the following, the most important equations of 
Brandenburg and Klemm (2016; 2019) (in this case for the 
shear coefficient a = 1, valid for the Bernoulli web) are shown.

The system equations that describe the lateral dynam-
ics of the web are the bending equation of the Bernoulli 
beam (or in the case of Brandenburg and Klemm (2019), 
the Timoshenko beam) and the two so-called transport 
equations (velocity equation and acceleration equation) 
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of the web. At constant transport velocity and constant 
stress, the bending equation of the Bernoulli beam 
according to Brandenburg and Klemm (2016), Equation 
(3.3.1) is

∂4𝑦𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦
∂𝑦𝑦4 − 𝐾𝐾2

B
∂2𝑦𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦

∂𝑦𝑦2 = 0  [1]

with the square of the curvature factor for the 
Bernoulli web (index ‘B’) 

𝐾𝐾2
B =

𝑇𝑇
𝐸𝐸𝐸𝐸  [2]

with 

T: tensile force in newtons [N], affecting beam  
 deformation 
E: modulus of elasticity in pascals [Pa], indicating  
 material stiffness 
I:  area moment of inertia about the z-axis in [m4],  
 reflecting bending resistance.
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Figure 1: Mathematical notation system for a three-roller 
system with input offset and change of input angle at 

roller 1; quantities are given in the List of symbols

In order to introduce variable web velocities and variable 
tensile forces, Equation [1] must be linearized for small 
deviations (marked by tilde) from the steady state 

(marked by horizontal dash), since KB = KB(t) is a time 
function now. Linearization was performed in 
Brandenburg and Klemm (2016). 

The linearized form of the Bernoulli web is given by 
Brandenburg and Klemm (2016), Equation (6.1.4):

∂4��𝑇𝑥𝑥� 𝑇𝑇𝑇
∂𝑥𝑥4 − K2B

∂2��𝑇𝑥𝑥� 𝑇𝑇𝑇
∂𝑥𝑥2 = 𝜅𝜅m�𝑇𝑇𝑇𝑇𝑇𝑇  [3] 

with the mean curvature factor

𝜅𝜅m = 1
𝐸𝐸𝐸𝐸 �

∂2y𝐸𝐸(𝑥𝑥𝑥
∂𝑥𝑥2 �

mean

     
 [4]

and the curvature factor

𝐾𝐾2
B =

𝑇𝑇
𝐸𝐸𝐸𝐸

 [5]

at the steady-state operating point, as described by 
Brandenburg and Klemm (2016), Equations (6.1.9) and 
(2.1.8). Equation [3] is a linear, inhomogeneous differential 
equation with constant coefficients. This was solved in 
Brandenburg and Klemm (2016), by the method of 
variation of the constant (Lense, 1948).

2.2 Transfer functions of the Bernoulli web with 
variable tensile force and change of position 
of the control roller

A distinction must be made between two movements of 
the control roller, namely a pure translation and a pure 
rotation, because different boundary conditions apply to 
each of these movements as shown in Brandenburg and 
Klemm (2016), in Figure 3.3.1, a and b. Accordingly, even 
in the case of constant web force, there are two separate 
solutions of the homogeneous, linearized partial differ-
ential equation. In the case of variable tensile force, dif-
ferent dynamic terms consequently occur in the case of 
variable tractive force. 

According to Brandenburg and Klemm (2016), Equation 
(6.3.11) presents the following Laplace-domain transfer 
function:

��E3,trans(𝑠𝑠𝑠 𝑠

𝜏𝜏223
̄𝑓𝑓B,23

𝑠𝑠2 +𝐾𝐾B𝜏𝜏23𝑠𝑠

𝜏𝜏223
̄𝑓𝑓B,23

𝑠𝑠2 +𝐾𝐾B,23𝜏𝜏23𝑠𝑠 + 𝑠
��2(𝑠𝑠𝑠

+

𝐿𝐿223
̄𝑓𝑓B,23

C (23𝑠
5,trans𝜅𝜅m,23

𝐾𝐾2
B,23

𝜏𝜏223
̄𝑓𝑓B,23

𝑠𝑠2 +𝐾𝐾B,23𝜏𝜏23𝑠𝑠 + 𝑠
�𝑇𝑇23(𝑠𝑠𝑠

 

[6] 



G. Brandenburg – J. Print Media Technol. Res. – Vol. 13 No. 3 (2024), 135–144 137

Equation [6] corresponds to web section 2–3 and 
assumes pure linear translation of the control roller. In 
this context, the index ‘L’ from Brandenburg and Klemm 
(2016) has been substituted with the web section 
identifier 23, as depicted in Figure 1. Additionally, 
Equation (6.3.4) from Brandenburg and Klemm (2016) 
applies

𝐶𝐶(23)
5,trans = �𝑓𝑓1𝑇𝑇𝐾𝐾

2
B sinh �̄�𝑢 𝑢 𝑓𝑓2𝑇𝑇𝐾𝐾

2
B cosh �̄�𝑢

𝑢(cosh �̄�𝑢 𝑢 𝑢)]23

𝐾𝐾2
B,23 = �𝑇𝑇23/(𝐸𝐸𝐸𝐸𝐸 according to Equation [6] and   

Brandenburg and Klemm (2016), Equation (6.1.9), and 
�̄�𝑢 𝑢 �̄�𝑢23 𝑢𝐾𝐾B,23𝐿𝐿23 after Brandenburg and Klemm 
(2019), Equation (3.26). 

1 𝛵𝛵

y

v + v

z

𝛵𝛵 + 𝛵𝛵

2

𝛩𝛩L + 𝛩𝛩L

𝛵𝛵 x

𝛩𝛩r + 𝛩𝛩L

𝛩𝛩r 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Steady state (black) and small deviations 
(blue) of the web (from Brandenburg (2016), Figure 

6.1.1). Quantities are given in the list of symbols

Since the solution to the homogeneous differential 
equation (the first term on the right side of Equations 
[6] and [8]) aligns with the block plan, the second term 
on the right must also conform to it. This is because 
the linearized inhomogeneous bending equation from 
Brandenburg and Klemm (2016), Equation (6.1.10), is 
structurally composed of the same elements as the homo-
geneous bending equation in Equation (6.1.2).

The corresponding relations for pure rotation, as 
described in Brandenburg and Klemm (2016), Equation 
(6.3.14), are

��E3,rot(𝑠𝑠𝑠 𝑠
𝐾𝐾B,23

𝜏𝜏223
̄𝑓𝑓B,23

𝑠𝑠2 +𝐾𝐾B,23𝜏𝜏23𝑠𝑠 + 𝑠
𝐿𝐿23 �𝛩𝛩r2(𝑠𝑠𝑠

+

𝐿𝐿223
̄𝑓𝑓B,23

C (23𝑠
5,rot𝜅𝜅m,23

𝐾𝐾2
B,23

𝜏𝜏223
̄𝑓𝑓B,23

𝑠𝑠2 +𝐾𝐾B,23𝜏𝜏23𝑠𝑠 + 𝑠
�𝑇𝑇23(𝑠𝑠𝑠

 

[8]

with

C (23)
5,rot = �𝑔𝑔1𝑇𝑇𝐾𝐾

2
B sinh �̄�𝑢 𝑢 𝑔𝑔2𝑇𝑇, 𝐾𝐾

2
B cosh �̄�𝑢

𝑢(cosh �̄�𝑢 𝑢 𝑢)]23

 [9]

Both equations, [6] and [8], consist of the solution of the 
homogeneous linearized differential equation and of the 
new term of the change in tensile force.

Now it is necessary to determine at which point in the 
block plan the variable tensile force �𝛩𝛩r2 = 0  acts. In 
the first step, the double block plan of Figure 3 is drawn 
below. The upper part of the plan refers to the pure trans-
lation of the control roller, i.e. �𝛩𝛩r2 = 0 , the lower part for 
the pure rotation of the control roller, i.e. ��2 = 0.

In the case of pure translation the simpler expression 
Ez2 is introduced:

��E3(𝑠𝑠𝑠 𝑠 𝑠𝑠z2𝐴𝐴23(𝑠𝑠𝑠�𝑇𝑇23(𝑠𝑠𝑠

𝑠 1
𝜏𝜏223
̄𝑓𝑓B,23

𝑠𝑠2 +KB,23𝜏𝜏23𝑠𝑠 + 1
𝑠𝑠z2�𝑇𝑇23(𝑠𝑠𝑠

 
[ 1  0 ]

with the retro-active factor (c.f. Brandenburg and 
Klemm (2016), Equation (6.3.12))

𝐸𝐸z2 =
𝐿𝐿223
̄𝑓𝑓B,23

C (23)
5,rot𝜅𝜅m,23

𝐾𝐾2
B,23

 

[1 1]

 
In the case of pure rotation the simpler expression EΘ2 
is introduced:

��E3(𝑠𝑠𝑠 𝑠 𝑠𝑠𝛩𝛩2𝐴𝐴23(𝑠𝑠𝑠�𝑇𝑇23(𝑠𝑠𝑠

𝑠 1
𝜏𝜏223
̄𝑓𝑓B,23

𝑠𝑠2 +𝐾𝐾CB,23𝜏𝜏23𝑠𝑠 + 1
𝑠𝑠𝛩𝛩2�𝑇𝑇23(𝑠𝑠𝑠

 
[ 1   2 ]

with the retro-active factor

[7]
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𝐸𝐸𝛩𝛩2 =
𝐿𝐿223
𝑓𝑓B,23

C (23)
5,rot𝜅𝜅m,23

𝐾𝐾2
B,23

 

[1  3]

These terms are shown in Figure 3.

2.3 Transfer functions for input offset and angle 
change

An input offset and/or a change in input angle were not 
addressed in Brandenburg and Klemm (2016).

2.3.1 Input offset

If an input offset ỹE1 occurs at roller 1 (see Brandenburg 
and Klemm (2019), Figure 4.1), and the control roller 
is in the rest position ( ��2 = �𝛩𝛩r2 = 0) the input offset 
is propagated to the entry of roller 2 and triggers both 
an input offset ỹE2 and a change in the input angle �𝛩𝛩E2.

The upper partial block plan of Figure 3 shows the fol-
lowing: A pure translation ��2,trans dynamically results in 
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Figure 3. Changes in tensile force (blue) according to the block plan in Brandenburg and Klemm (2019), Figure 5.12; 
the upper partial block plan is used for pure translation, the lower one for the pure rotation of the control roller;  

all variables are small deviations from the steady state; quantities are presented in the list of symbols
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the same dynamic reaction in section 2–3 as an input off-
set in section 1–2. Therefore, the same equations apply 
universally, but with appropriately modified transfer 
blocks. Analogous to Brandenburg and Klemm (2016), 
Equation (6.3.11), it is written:

��E2,Evers(𝑠𝑠𝑠 𝑠

𝜏𝜏212
𝑓𝑓B(�̄�𝑢𝑠

𝑠𝑠2 +𝐾𝐾B𝜏𝜏12𝑠𝑠

𝜏𝜏212
𝑓𝑓B(�̄�𝑢𝑠

𝑠𝑠2 +𝐾𝐾B𝜏𝜏12𝑠𝑠 + 𝑠
��E1,Evers(𝑠𝑠𝑠

+

𝐿𝐿212
𝑓𝑓B(�̄�𝑢𝑠

C (12𝑠
5,Evers𝜅𝜅m
𝐾𝐾2
B

𝜏𝜏212
𝑓𝑓B(�̄�𝑢𝑠

𝑠𝑠2 +𝐾𝐾CB𝜏𝜏12𝑠𝑠 + 𝑠
�𝑇𝑇12(𝑠𝑠𝑠 

[14]

C (12)
5,Evers = �𝑓𝑓1T𝐾𝐾

2
B sinh �̄�𝑢 𝑢 𝑓𝑓2𝑇𝑇𝐾𝐾

2
B cosh �̄�𝑢

𝑢(cosh �̄�𝑢 𝑢 𝑢)]12

 

[15]

and 𝐾𝐾2B according to Equation [3]. The first term on the 
right indicates that for t → ∞ the input offset has arrived 
at the input of roller 2. The second term describes the 
influence of the variable tensile force on the input of 
roller 2 and comes from Brandenburg and Klemm (2016), 
Equation (6.3.11), and Equation [14] is identical to the sec-
ond term of Brandenburg and Klemm (2019), Equation 
(4.83) when formulated for the Bernoulli web.

2.3.2 Change of the input angle

The following can be seen in the lower partial block 
plan of Figure 3: A pure change in angle �𝛩𝛩r2 results in 

the same dynamic reaction in section 2–3 as a change 
in the input angle �𝛩𝛩𝐸𝐸𝐸 for section 1–2. Therefore, the 
same equations apply, but with modified transfer blocks. 
Analogous to Equation (6.3.14) in Brandenburg and 
Klemm (2016) it is written:

��E2,Ewinkel(𝑠𝑠𝑠 𝑠
𝐾𝐾B(�̄�𝑢𝑠

𝜏𝜏212
𝑓𝑓B(�̄�𝑢𝑠

𝑠𝑠2 +𝐾𝐾B(�̄�𝑢𝑠𝜏𝜏12𝑠𝑠 + 𝑠

× 𝐿𝐿12��E1,Ewinkel(𝑠𝑠𝑠

+

𝐿𝐿212
𝑓𝑓B(�̄�𝑢𝑠

C (12𝑠
5,Ewinkel𝜅𝜅m

𝐾𝐾2
B

𝜏𝜏212
𝑓𝑓B(�̄�𝑢𝑠

𝑠𝑠2 +𝐾𝐾B(�̄�𝑢𝑠𝜏𝜏12𝑠𝑠 + 𝑠
�𝑇𝑇12(𝑠𝑠𝑠

 
[16]

with

C (12)
5,Ewinkel = �𝑔𝑔1𝑇𝑇𝐾𝐾

2
B sinh �̄�𝑢 𝑢 𝑔𝑔2𝑇𝑇𝐾𝐾

2
B cosh �̄�𝑢

𝑢(cosh �̄�𝑢 𝑢 𝑢)]12

 
[1 7]

Then the two partial block plans from Figure 3 can be 
pushed one on top of the other to create Figure 4, in 
which the change in tensile force �𝑇𝑇23(𝑠𝑠𝑠 acts in the mid-
dle between the blocks Ez2 and EΘ2. In the model accord-
ing to Brandenburg and Klemm (2019), Figure 5.5, it is 
assumed that when the input offset and/            or input angle 
change is assumed, the control roller 2 (see Figure 5) is 
in the rest position.

The question of what kind of transient would occur if 
the control roller is at rest but at an angle, i.e. has a sta-
tionary position �̄�𝛩r2 ≠ 0, is not relevant. This is because 
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Figure 4. Web tensile force at the summation points of z2 = z(2,trans) and Θr2 = Θ(r2,rot). 
Quantities are presented in the list of symbols 
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it is an initial state that influences the stationary move-
ment of the web, but which no longer plays a role after 
the introduction of small deviations.

2.4 Relationship of tensile force with the 
continuity equation

2.4.1 Transfer functions of the lateral behavior under 
the influence of control rollers

The following consideration is important: The three-
roller system in Figure 1 assumes that there is a 
change in tensile force �𝑇𝑇 on roller 2, which is accom-
panied by a change in the speed of the web. The main 
reason for this is not important for this particular 
discussion.

2.4.2 Mass flow in the six-roller system and reaction 
to lateral movement

So far, the causes of a change in web force have not 
been discussed, but rather how this affects lateral 
web deviation has been investigated.

Changes in web tension and web force are – apart 
from changes in humidity and temperature – caused 

by the mass flow, for example by changing the periph-
eral speeds of the drive rollers, as is well known. The 
mathematical description is based on the continu-
ity equation. This concept was already derived in 
Brandenburg (1976). In contrast to German literature, 
it has hardly played a role in American engineering 
literature. Anyhow, in recent years, interest in apply-
ing these principles to high-speed web handling has 
grown.

For Bernoulli webs, i.e. webs that are not too wide 
( L / b > 10, where L is the length and b the width of 
the web, i.e. by definition its shear factor is a = 1) can 
be shown that:

• The equations of the lateral behavior of the web 
and the mass flow are only slightly coupled to 
one another,

• There is hardly any difference between the conti-
nuity equation in the x-direction and the slightly 
different lateral transport direction.

A six-roller system according to Figure 5 with control 
roller 3 is assumed. In this case, the mass flow chain 
drawn in Figure 6 follows from Equation [18].
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Figure 5: Complete system with control roller and mass flow chain; all variables are small deviations  
from the steady state; quantities are presented in the list of symbols
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̃𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑠𝑠𝑠 𝑠
1

1 + 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠

× � ̃𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑠𝑠𝑠 +
�̃�𝑣c𝑖𝑖𝑖𝑖𝑖(𝑠𝑠𝑠 𝑠 �̃�𝑣c𝑖𝑖𝑖𝑖𝑖(𝑠𝑠𝑠

�̄�𝑣 �

 

[18] 

The tensile force �𝑇𝑇01 is impressed on the roller 1. The 
control roller 3 is positioned between the axially driven 
rollers 2 and 4. The rollers 5 and 6 are also axially driven 
rollers. Each web section is represented by a PT1 ele-
ment (i.e. a 1st order lag) with a time constant according 
to Equation [18]. These PT1 elements act on the lateral 
deflection and the angular deviation of the actual web.

The strain was written in the form

̃𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
�̃�𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐴𝐴𝐴𝐴

 

Since the movement of the control roller has no influ-
ence on the web tension, the web tension in sections 2–3 
and 3–4 is the same. The question now is whether every 
lateral deviation ��E𝑖𝑖 and every change in angle �𝛩𝛩E𝑖𝑖 can 
be assigned a reaction from the material flow chain. The 
answer is that this is mandatory. For example, it may be 

that �𝑇𝑇01 = 0 and only the speed �𝑣𝑣c5 ≠ 0 changes. Then 
there is always a reaction on ��E5 and �̃�𝛩E5  (see Figure 5 ).

The next step is to add the register errors to the block 
plan from Figure 5.

2.5 Registration errors taking into account the 
retro-active effects of variable web tensile 
forces

In the publication Brandenburg and Klemm (2023), 
Figure 4, there is already a system plan with lateral and 
longitudinal registration errors, which, however, does 
not take into account the effects of changes in tensile 
force on the lateral behavior of the web. Figure 5 pre-
sented here has been supplemented with the additional 
blocks of register errors, without the control roller for 
reasons of clarity. This creates the ‘multi-layer plan’ pre-
sented in Figure 6.

In the ‘cycle’ of the mass flow chain, the lateral web devi-
ations and thus the lateral register errors are influenced 
via the signal paths marked in red.The longitudinal reg-
ister errors due to the force changes in the mass flow 
chain are well known. When adding the longitudinal and 
the lateral register error, it must be noted that the two 

T01

T12
AE

vc2 / v

vc1 / v

AE
1

𝜏𝜏12

T23
AE

vc3 / v

vc2 / v 𝜏𝜏23

T34
AE

vc4 / v

vc3 / v 𝜏𝜏34

vc5 / v

vc4 / v 𝜏𝜏45

 E1

A12

12

B12C12

A12

 E1
 E2

 

𝛩𝛩 

𝛩𝛩2

E 2𝛩𝛩

A23

24

B23C23

A23

 E2T

 

E3T𝛩𝛩
 

A34

34

B34C34

A34

 

 

 E  4𝛩𝛩

E𝛩𝛩

E z2T12

E𝛩𝛩𝛩

Ez3T23

E4

E𝛩𝛩𝛩

Ez4T34

E3T E4T

E 2T𝛩𝛩

E3𝛩𝛩
E4T𝛩𝛩

e-𝜏𝜏12s

v / s

e-𝜏𝜏12s

YS,

Yx,

Yy, e-𝜏𝜏23s

v / s

e-𝜏𝜏23s

YS,

Yx,

Yy,

e-𝜏𝜏34s

v / s

e-𝜏𝜏34s

YS,

Yx,

Yy,E4

AE AE AE

E2

E3

E2

E2 E3

E3 E4

E4

Figure 6: Block plan of the overall system without control roller (blue signal lines: lateral register errors, black signal 
lines: longitudinal register errors, red signal lines: retroactive effect of the web tensile forces); ; quantities are 

presented in the list of symbols

 [19]
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• Change of peripheral velocities of the mass flow 
chain and investigation of their effect on the other 
variables of the overall system,

• Extension of Figure 6 to include the partial cutting 
register errors (Brandenburg, 2011),

• Insertion of the mathematical models for doubling 
in and between printing units (Brandenburg 2000),

• Extension of Figure 6 by the electronic line shaft of 
the controlled drive motors,

• Insertion of side edge controls of the web,

• Insertion of the controls for longitudinal and/or 
lateral register errors,

• Non-interacting control of web forces and cut-off 
register errors in rotary printing presses with elec-
tronic line shafts (see Brandenburg, Geißenberger 
and Klemm, 2004),

• Investigation of controls of tensile forces.

3. Conclusion

The state-of-the-art printing press is a system con-
sisting of printing units that print information on the 
moving web and of electric drive motors in the form 
of an electronic line shaft. Together with guide roll-
ers these units provide high-precision longitudinal 
and lateral web guidance. Because of multiple distur-
bances, longitudinal and lateral register errors occur. 
In order to keep these register errors to a minimum, 
the disturbances must be minimized on the one hand 
by technological measures and on the other hand by 
means of closed-loop controls.The multi-layer model 
in Figure 6 shows the overall system of lateral and 
longitudinal register errors in a clear manner as well 
as the retro-active effect of the mass flow chain on the 
lateral register errors. The multi-layer model enables 
extensive simulations of the relevant system variables 
with the aim of reducing time-consuming measure-
ments on real printing machines. In the case of printing 
companies with large pressroom equipment, e.g. with 
machines for commercial printing, machines for news-
paper printing, and rotogravure presses for high-qual-
ity art printing, the multi-layer model, together with 
other production elements, could be fed into an AI that 
carries out higher-level operational coordination tasks 
(see also Chen, 2023).

errors are perpendicular to each other (Brandenburg 
and Klemm, 2023). 

If the mass flow chain is only excited by �𝑇𝑇01, the three 
longitudinal register errors �𝑌𝑌𝑥𝑥𝑥E2, �𝑌𝑌𝑥𝑥𝑥E3 and �𝑌𝑌𝑥𝑥𝑥E4 appear. 
The retro-active signal paths (red in Figure 5) produce 
the lateral register errors �𝑌𝑌𝑦𝑦𝑦E3 and �𝑌𝑌𝑦𝑦𝑦E4, without any 
change in E1 or 𝛩𝛩E1 . The lateral register error �𝑌𝑌𝑦𝑦𝑦E2 
also occurs, only if ��E1 ≠ 0 and/or �𝛩𝛩E1 ≠ 0 is valid.

The following engineering and scientific results are 
completely new. 

The multi-layer model of Figure 6 did not yet exist in 
this form. It consists of three layers, which can be char-
acterized as follows:

1) In the upper layer, it shows the linkage of the lateral 
deflections and input angle changes according to the 
lateral block plan.

2) In the lower layer it shows the link of the longitudi-
nal strain changes 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖/(𝐴𝐴𝐴𝐴𝐴 with the periph-
eral velocities of the longitudinal time lags. And it is an 
image of the mass flow.

3) The middle layer consists of the lateral register 
errors �𝑌𝑌𝑦𝑦𝑦Ei and the longitudinal register errors �𝑌𝑌𝑥𝑥𝑥Ei.

Their sum makes up the total register errors ����𝑌𝑌𝑆𝑆𝑆Ei . 
When adding, it should be noted that they are spa-
tially perpendicular to each other. Therefore, they can 
also be written vectorially, as Equation [20] shows 
(Brandenburg and Klemm, 2023):

�⃗𝑌𝑌𝑆𝑆𝑆Ei = �⃗𝑌𝑌𝑥𝑥𝑆Ei + �⃗𝑌𝑌𝑦𝑦𝑆Ei = �𝑌𝑌𝑥𝑥𝑆Ei𝑒𝑒𝑥𝑥 + �⃗𝑌𝑌𝑦𝑦𝑆Ei𝑒𝑒𝑦𝑦  [20]

This sum vector changes its magnitude and angle dur-
ing a transient while the web is moving. 

The multi-layer model shown in Figure 6 can 
be regarded as a new module of the automation 
technology.

2.6 Potential of the multi-level model

The multi-level model shown in Figure 6 offers a com-
prehensive application potential for simulations and 
subsequent measurements:

• Change of one or all three input variables: web off-
set, input angle and tensile force, 
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Symbol Description

𝑎𝑎 Shear coef�icient
𝑏𝑏 Width of the web

C (23)
5,trans, C

(23)
5,rot Constants for pure translation and pure rotation, respectively, in web section 2–3

according to Equations [7] and [9]
𝐸𝐸 Modulus of elasticity
𝐸𝐸𝑧𝑧2 Retro‑active factor of tensile force on the lateral web de�lection, Equation [11]
𝐸𝐸𝛩𝛩2 Retro‑active factor of tensile force on the lateral web angle change, Equation [13]
𝑓𝑓B,𝑖𝑖,𝑖𝑖𝑖𝑖 Steady state constant of the Bernoulli web in section 𝑖𝑖, 𝑖𝑖 𝑖 𝑖, Equations [6]

and [8]
𝑓𝑓𝑖𝑦𝑦, 𝑓𝑓2𝑦𝑦 Constants according to Brandenburg and Klemm (2016), Equations (3.3.1.6),

(3.3.1.7) and (6.2.6)
𝑓𝑓𝑖𝑇𝑇, 𝑓𝑓2𝑇𝑇 Constants according to Brandenburg and Klemm (2016), Equations (6.2.9) and

(6.2.10)
𝑔𝑔𝑖𝑇𝑇, 𝑔𝑔2𝑇𝑇 Constants according to Brandenburg and Klemm (2016), Equations (6.2.18) and

(6.2.19)
𝑔𝑔𝑖𝛩𝛩 , 𝑔𝑔2𝛩𝛩 Constants according to Brandenburg and Klemm (2016), Equations (6.2.18) and

(6.2.19)
ℎ Thickness of the web
𝐼𝐼 Moment of inertia of area referred to the 𝑧𝑧‑axis in [m4]
𝐾𝐾B Curvature factor 𝐾𝐾 𝐾 �𝑇𝑇𝑇𝐸𝐸𝐼𝐼 in [m−𝑖] for the Bernoulli web
𝐾𝐾B,𝑖𝑖,𝑖𝑖𝑖𝑖 Curvature factor (of the Bernoulli web) in section 𝑖𝑖, 𝑖𝑖 𝑖 𝑖
𝐾𝐾B Steady state curvature factor according to Brandenburg and Klemm (2016),

Equation (2.1.8) and Equation [5]
𝐿𝐿𝑖𝑖,𝑖𝑖𝑖𝑖 Length of the free web between rollers 𝑖𝑖, 𝑖𝑖 𝑖 𝑖
𝑠𝑠 Laplace transform operator
𝑡𝑡 Time
𝑇𝑇 Tensile force [N] according to Brandenburg and Klemm (2016), Figure 2.1.2
𝜏𝜏𝑖𝑖,𝑖𝑖𝑖𝑖 Time constant of the web in section 𝑖𝑖, 𝑖𝑖 𝑖 𝑖
�𝑇𝑇23(𝑠𝑠) Small variation of tensile force in section 2‑3
�̄�𝑢𝑖𝑖,𝑖𝑖𝑖𝑖 From curvature factor and length: �̄�𝑢𝐿𝐿,𝑖𝑖,𝑖𝑖𝑖𝑖 𝐾 �̄�𝐾B,𝑖𝑖,𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖,𝑖𝑖𝑖𝑖 in web section 𝑖𝑖, 𝑖𝑖 𝑖 𝑖,

according to Brandenburg and Klemm (2019), Equation (3.26) in steady state of
motion

𝑉𝑉 Velocity in direction of web motion (see Brandenburg and Klemm (2016),
Figure 2.1.1)

𝑉𝑉C 𝐾 𝑣𝑣C ≈ 𝑉𝑉 Peripheral velocity of the control roller 2 (velocity of the web elements in the
adhesion zone of the control roller≈web velocity, see Figure 2.1.1,
Shelton 1968)

(𝑥𝑥, 𝑥𝑥) Coordinate system (see Figure 1)
𝑥𝑥E Lateral web de�lection (see Figure 1)
𝑥𝑥E𝑖𝑖,trans Lateral web de�lection at entry 𝑖𝑖 with translatory movement
𝑥𝑥E𝑖𝑖,rot Lateral web de�lection at entry 𝑖𝑖 with rotational movement
𝑥𝑥E2,Evers Lateral web de�lection at entry 𝑖𝑖 with input offset
𝑥𝑥E2,Ewinkel Lateral web de�lection at entry 𝑖𝑖 with change of the input angle
�𝑌𝑌𝑥𝑥,E𝑖𝑖 Longitudinal registration error at entry of roller 𝑖𝑖 (see Figure 6)
�𝑌𝑌𝑦𝑦,E𝑖𝑖 Lateral registration error at entry of roller 𝑖𝑖 (see Figure 6)
�𝑌𝑌𝑆𝑆,E𝑖𝑖 Lateral registration error (cf. Figure 6 and Equation [20])
𝑧𝑧 Lateral position of roller 2 (see Figure 2)
𝛩𝛩E Entry angle (see Figure)
𝛩𝛩𝐿𝐿 Angle of web edge relative to 𝑥𝑥‑axis at the entrance line of roller 2 (see Figure 2)
𝛩𝛩r Rotation angle of the control roller (see Figure 4)
𝜅𝜅m Mean steady‑state curvature pro�ile (see Brandenburg and Klemm (2016),

Equation (6.1.9))
𝜅𝜅m𝑖𝑖,𝑖𝑖𝑖𝑖 Mean steady‑state curvature pro�ile in web section 𝑖𝑖, 𝑖𝑖 𝑖 𝑖

Table 1: Extended list of symbols and their descriptions.
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