
J. Mušič and H. Gabrijelčič Tomc – J. Print Media Technol. Res. – Vol. 11 No. 2 (2022), 129–140 129

1. Introduction

We are constantly surrounded by countless amounts of
information, both in physical space and on the internet.
It can thus become extremely exhausting to find the
information we are looking for or to critically evaluate
the value of the information we have. One of the tools
we can use to enrich an online document with data and
highlight the importance and value of certain informa-
tion is animation. This can be in the form of micro-an-
imations (for example, the transformation of the menu
icon into a backspace icon) or animations that involve
more intense movement (Pratt, et al., 2010). These
are, for example, the animated graphic elements that
accompany or guide us through the website. They
make websites more attractive, but can also contribute
to the user experience by speeding up the recognition

of graphic elements (Head, 2016). Animations have
evolved since the beginning of web development, and
every year a new solution for creating them appears.
Moreover, the demand for animations is growing as
websites and webpages change from static to dynamic.
However, these solutions are not always of the same
quality and complexity to use, and can also be costly in
terms of hardware (Chinnathambi, 2017).

Web technologies have been evolving since 1989, when
Tim Berners-Lee, then an employee of the European
Council for Nuclear Research (CERN), had the idea
for the World Wide Web and invented the Hypertext
Transfer Protocol (HTTP) to properly display web-
pages, from servers to client devices, that is, in the
browser of a computer or mobile device (Chrome,
Safari, Firefox, etc.) (McCullough, 2018).

JPMTR-2110 Research paper | 163
DOI 10.14622/JPMTR-2110 Received: 2021-08-15
UDC 004.92:004.7|004.03 Accepted: 2022-04-08

A comparison of current solutions 
for creating web animations on Apple hardware

Jaka Mušič and Helena Gabrijelčič Tomc

University of Ljubljana, Faculty of Natural Sciences and Engineering, helena.gabrijelcic@ntf.uni-lj.si
Department of Textiles, Graphic Arts and Design,
Chair of Information and Graphic Arts Technology

Abstract

The content available online consists of titles, texts, images, and multimedia, including animations. Some animations
are immediately noticeable, while others are less obvious, yet they play an important role in the interactivity of a
website. When implemented correctly and working properly, animations can greatly enhance the user experience.
In the theoretical part of this paper, the basic technologies of the web are introduced. These are Hypertext Markup
Language, Cascading Style Sheets (CSS) and JavaScript. The history of web animations is presented as well as the
perception of animations in terms of the qualities required by the human eye to perceive them as fluid. In the experi-
mental part, methods for creating animations were selected for testing. These were CSS animations, Web Animations
Application Programming Interface (WAAPI) and Lottie animations. For each of these methods, an identical animation
was designed and implemented on a website. The animations were then tested with a different number of elements
in two browsers on multiple devices and Apple hardware. During creation and testing, an analysis was made of how
difficult it is to design and implement the animations on a website, and how powerful they are: the ability to display a
high number of frames per second, how much memory they require on the graphics card, and how much data must be
transferred from the server for them to play properly. The results were recorded and summarised. Some recommen-
dations were made in the results, i.e. which method to use depending on the intended use case. The CSS and WAAPI
animations and transitions were found to be more suitable for complex web animations, while Lottie was found to
be useful for simpler animations.

Keywords: interactive website, cascading style sheets (CSS), web animations application programming inter-
face (WAAPI), Lottie animations

130 J. Mušič and H. Gabrijelčič Tomc – J. Print Media Technol. Res. – Vol. 11 No. 2 (2022), 129–140

When we want to access a webpage, an HTTP request
is made in this way, but not necessarily in this order,
except for the first step: the browser requests the page,
the server provides the Hypertext Markup Language
(HTML) file, and if needed the browser requests the
style file, the request is answered by returning the
cascading style sheet (CSS) file, the browser requests
images and additional files specified in the HTML
file, the server provides images and additional files,
the browser then also requests scripts and receives
JavaScript (JS) files from the server (McCullough, 2018;
Berners-Lee, 2021). We can now use the latest versions
of CSS not only to design but also to animate content.
For this purpose, two properties are available, namely
animation and transition. In the first one, we can use
keyframes to display the position and other properties
for a particular frame. This animation can be called
multiple times and can be given duration, delay and
repeat properties. A transition, on the other hand, is
more used for mouse movements, clicks, and mouse
transformations (Weyl, 2016; W3Schools, 2021).

1.1  From early beginnings to modern animations

Animation is the perception of movement and the illu-
sion of change using sequences of images that differ
only slightly from one another (Ferreira, 2017). Simply
put, animation is the movement of graphics or the
visualisation of change over time, and while the basic
ideas have remained the same, the methods of anima-
tion have changed over the years.

Dynamic elements on websites have been driven by
Graphics Interchange Format (GIF) technology. The
GIF format was introduced in 1987, and was the first
technology to animate the previously static frames
seen online. This format is now more than 30 years
old and is still widely used. Due to its structure, it can
represent 256 different colours (a JPEG can represent
16 million), and an advantage of this format is that a file
can contain several consecutive frames. Today they are
often used in reaction GIFs (a genre of meme), which
can be used as a response instead of text in various
online contexts. There are various online collections
where users can find the perfect reaction GIF, such as
Giphy (Shamms Mortier, 1997).

In the late 1990s, Adobe developed Flash technology,
which was promoted as “a standard for delivering
rich web content with powerful impact. Graphics, ani-
mations, and user interfaces can be rendered on all
browsers and platforms” (Adobe, 2021). However, Flash
has now fallen out of use and has not been supported
since January 1, 2021, because it required considerable
hardware resources that mobile devices were not able
to provide at the time, and also had security vulnera-
bilities (Carrera, 2010).

1.2  SVG animations

Scalable Vector Graphics (SVG) animations are based
on HTML elements, but add something unique, such as
the path element. Their advantage is very good support
in various browsers, except Internet Explorer. However,
they are relatively expensive to use, and are becoming
less common due to better alternatives being available
(Drasner, 2017; Bellamy-Royds, Cagle and Storey, 2017).

1.3  CSS3 animation technology

Cascading Style Sheets version 3 (CSS3), was intro-
duced, along with HTML5, to meet the needs of devel-
opers for better animation technology. Together
these two new systems paved the way for interactive
websites, creating a large number of interesting pro-
jects, although some issues still remained and thus
many developers resorted to libraries written specif-
ically for animation (Weyl, 2016; Chinnathambi, 2017).

1.4  Web Animations API

Web Animations Application Programming Interface
(WAAPI) is one of the newer technologies for creating
web animations. It is built on top of JS and is based
on two models, for timing and animation. The timing
model is the basis for working with the Application
Programming Interface (API). Each website and each
document has its own timeline that extends from page
loading to infinity, or to the point when the tab is closed.
The animations are distributed along the timeline in an
order specified by the startTime parameter. An anima-
tion model is a sequence of images arranged according
to a time model. This model thus ensures that anima-
tions or changes to elements are executed in the order
specified by the time model (MDN Web Docs, 2021).

1.5  Libraries

There are many libraries on the internet that help us
create or add animations to elements. One of them is
animate.css, which provides us with preset CSS ani-
mations that we can easily attach to elements using
classes, identifiers, or element names. However, the
most advanced option is the GreenSock Animation
Platform (GSAP) library, which allows users to create
their own animations, is based on JS, and also supports
various plug-ins (GreenSock, 2020).

1.6  Lottie animations

Lottie animations are JavaScript Object Notation (JSON)
animation files that make it possible to publish and
display animations similar to static files (images).
The files are small and of the vector type, so there are
no size limitations due to resolution. Lottie is also a

J. Mušič and H. Gabrijelčič Tomc – J. Print Media Technol. Res. – Vol. 11 No. 2 (2022), 129–140 131

library for Android, iOS, React, and the web, which con-
verts animations created in Adobe After Effects (which
must be exported as a JSON file using the Bodymovin
plug-in) and then rendered natively by Lottie on the
device (Bassett, 2015).

1.7  User aspects and objectives of the research

For the user of a website or mobile app, the technical
side or implementation of a system is not as important
as its usability, usefulness, learnability, and so on. For
animations, this means they need to load quickly and
run smoothly. The latter aspect is particularly impor-
tant, as it greatly affects the user experience (Head,
2016; Pierce, 2016; Brundrett, 2016).

The human eye has a light-sensitive tissue called the
retina, located at the back, opposite the lens. Its pho-
toreceptors are responsible for converting an image
into an electrical signal and sending it to the brain.

When an object moves through our field of vision, the
photoreceptors are stimulated. However, the brain
cannot track objects that move faster than sixteen
times a second, and this is why most videos and mov-
ies are shot and played at 24 frames per second. Since
this is more than we can perceive, we see the separate
images as a single movement rather than a sequence
of shots.

The eye also has a limit to the amount of motion it can
detect. Although change is a continuous flow of infor-
mation and is not perceived by the eye in individual
frames, for most people this limit is 60 Hz or less (or
about 60 frames per second). Recent research suggests
that we might see up to 75 Hz, or that the lower limit of
the speed at which we can perceive change is as low as
13 milliseconds, but such measurements are very diffi-
cult to make, so there is no definitive answer (Potter,
et al., 2014). Most digital displays have a refresh rate
of 60 Hz, which seems to be sufficient at the present
(Merleau-Ponty, 2013). For the purposes of this study,
the lower limit was more important because it deter-
mines how the animation is perceived: whether it is
smooth or choppy.

This research was planned with the aim of uncovering
the best balance among simplicity, usability, and com-
plexity of web animations for designers, developers,
users and devices. The main goal of the research was to
find a solution for web animation design. We examined
the design method, the complexity of implementation
in the web environment, and the impact on hardware
resources: how many frames per second the browser
can display, how much memory is used on the graphics
card, and how much data must be transferred from the
server to the device for the animation to work.

The objectives of the research were to review some
recent solutions for creating web animations (CSS3
animations, WAAPI, and Lottie animations), to test
and compare these, and to analyse and select the most
suitable solution in terms of the relationship between
operational efficiency and ease of production.

Before conducting the research, we hypothesised the
following:

• Lottie animations offer the best balance between
simplicity and performance,

• WAAPI animations will consume more hardware
resources than CSS animations,

• Safari will play animations at more frames per sec-
ond than other browsers.

2.  Experimental

In the experimental part, the animations were created,
analysed, and tested in three different technologies:
CSS3 animations, WAAPI, and Lottie animations.

The visual appearance of the animations was the same,
the differences were only in the design, development
and rendering process. The animations were tested
on a simple website created for this purpose, with
different technologies to choose from. The tool also
displayed the number of frames per second that the
animation could show.

2.1  The development of the tool

There are several ways to test the quality of anima-
tions. We could test how much space they take up on
the graphics card RAM, how much processing power
they require, or how much data is transferred from the
server, but the most important is the rate of frames per
second at which they can be displayed, since this is the
only aspect that visitors perceive. Therefore, this is the
most important metric we used to test the quality of
our animations.

At the time of writing, none of the popular browsers
had developer tools that provided a detailed overview
of the information we needed to test the technologies.
Therefore, we developed a tool that displays and meas-
ures the performance of animations. This also opened up
the possibility of testing animations on mobile devices.
Figure 1 shows the entire implementation of the functional
part of the frame per second (fps) rate measurement.

In Figure 1 FPSMeter evaluates the framerate of an
animation embedded in a web page using CSS transi-
tions. We used fpsmeter from Corvoysier (2014). The
principle uses CSS itself and three steps to evaluate the

132 J. Mušič and H. Gabrijelčič Tomc – J. Print Media Technol. Res. – Vol. 11 No. 2 (2022), 129–140

actual rendering frame rate of a page. The steps are
the insertion of the CSS animated item in a page, cal-
culation of the computed position of the CSS animated
item at regular intervals and, finally, for every elapsed
second there is a counting of the number of different
positions occupied by the item (Corvoysier, 2011).

2.2  The making of animations

The canvas size was 1 920 pixels wide and 1 080 high.
For the animation, we designed eight graphic elements
with different shapes (four circles and four rectangles),
sizes and colours. In the initial state, the graphic ele-
ments were placed randomly on the canvas without
covering each other (Figure 2).

The animation consists of six keyframes (Figure 2),
with the first and last keyframes being identical, allow-
ing for an infinite loop. At each keyframe, we specify

the position, rotation, size, and colour of the elements.
Between the keyframes, we let the technologies com-
pute the transition paths. This template was then made
for Lottie in Adobe After Effects and exported with the
help of a free plug-in Bodymovin into the required
JSON file and developed in CSS and WAAPI. All three
types of animation were then implemented in the tool
for testing.

Tables A1 and A2 in Appendix show the changes in the
circular (Table A1) and rectangular (Table A2) graphic
elements during six levels of testing.

The animation is 2 500 ms (or two and a half seconds)
long, and the keyframe comes every 500 ms. We chose
this length so that the timing would be as fast as pos-
sible, that the animations is as demanding as possible
for the browser, and at the same time slow enough for
pleasant viewing.

Figure 1: Script that takes care of calling and manipulating the frame rate measurement script

Figure 2: Keyframes of the animation used in the experiment

J. Mušič and H. Gabrijelčič Tomc – J. Print Media Technol. Res. – Vol. 11 No. 2 (2022), 129–140 133

2.2.1 CSS animations code

While the Lottie animations have less programming,
the CSS animations have everything written in code.
For CSS animations, we used the method of keyframes
in CSS, where we set six key levels that were tied to
the percentage of elapsed time rather than time. We
started the process again by creating eight graphic
elements and setting the basic parameters. We had to
determine the position from the left and top, and for
those values to be valid we also had to determine the
absolute positioning and the position correction by
half in both directions. At the same time, we had to set
the size, colour, and radius of the frame (50 %) in the
case of a circle. Animation information (name, length
and loop) was also required for the animation to work.

To improve responsiveness, we added information to
the browser about which property will change (will-
change property). The complete syntax for one graphic
element is shown in Figure 3.

Keyframes were defined to allow the browser to track
changes in graphic elements. We had some main key-
frames in our animation, so we split the frames into
CSS keyframes in segments of 20 % each to cover all
the main frames, since the first and last frames had
to be identical to allow a seamless loop. We also used
the CSS transform property for movement instead of
the traditional positioning property, as this ensured
that the browser used GPU acceleration for rendering
instead of the slower browser rendering engine. The
key to this property was not to enter the offset value,

Figure 3: CSS code for the circular graphic element in the animation

Figure 4: Example of CSS animation properties for one circular graphic element

134 J. Mušič and H. Gabrijelčič Tomc – J. Print Media Technol. Res. – Vol. 11 No. 2 (2022), 129–140

but to change the (delta) position. Due to the correc-
tion of the centre alignment, the position change was
calculated as 50 % of the size and the offset was sub-
tracted from or added to that. The complete syntax for
the animation is shown in Figure 4.

This procedure was repeated for all eight graphic ele-
ments, and elements were prepared in the HTML file
to be animated.

2.2.2 Web Animations API code

This method is also based on writing the code, but some
part of it is common to that of the CSS set. The HTML
elements are the same, as is the basic CSS (Figure 5).

We have redefined the basic properties (size, position,
colours ...) of the elements, only this time we have left
out the animation property. This was written in JS. The
animation part (in JS) consists of two parts of anima-
tion data: i) keyframes and ii) animation time and style.

The animation data is unique for each element we
want to move independently. The animation data can
be global (as in our case, since we animate all elements

at the same time and for the same amount of time) or
unique for each element. We have defined six levels
that match those of the CSS method, only the syntax
was slightly different. This time, the percentages were
written as a value between 0 and 1, for example, 0.6
instead of 60 %. The properties of the animation are
shown in Figure 6.

In addition to the class, a unique identifier was added
so that HTML elements could be animated. The IDs in
JS were called and assigned to the animation proper-
ties, or the predefined variables were called. With that,
the animation was determined.

2.2.3 Lottie animation code

Lottie animations are JSON files that we export from
Adobe After Effects using the Bodymovin plug-in.

In After Effects, we created eight graphic elements
and assigned them colours and start positions. In the
timeline, we set keyframes, layers, position changes,
and other properties for each element. After complet-
ing the animation in After Effects, we exported it to the
JSON format using the Bodymovin plug-in. For the pur-

Figure 5: Example of CSS code for animation with WAAPI

Figure 6: Example of the JavaScript code configuration part for WAAPI animation

J. Mušič and H. Gabrijelčič Tomc – J. Print Media Technol. Res. – Vol. 11 No. 2 (2022), 129–140 135

poses of this study, we chose a JSON file as the result
of the rendering. To animate the JSON file on the web-
site, a bit more code was required. We first imported a
JS library that takes care of the execution of the anima-
tions and can convert the JSON file into SVG elements.
We created an object that the animation binds to. We
gave the library information about which element the
animation should appear in, the path to the JSON file,
the rendering mode, and other optional parameters
such as loops and autoplay (Figure 7). The library also
allows buttons to be associated with actions such as
starting and stopping playback. These can be used in
a playback environment for a better user experience
but are not critical to the operation of the animations
and do not change the display of the animations. With
this code, the implementation of the Lottie animations
was complete and ready for display in the browser.

2.3  Performance testing

After all the animations were implemented, the web
pages with the animations were transferred to the
server in a structure that allowed easy testing by type
of animation and number of graphic elements. We cre-
ated four identical animations for each of the technol-
ogies, with a different number of elements, stacked on
top of each other.

When testing performance, we were inspecting three
aspects: how many frames per second are displayed,
how much graphics card RAM is used, and how much
data is transferred from the server (Figure 8).

The base animation features eight shapes, with differ-
ent parameters. As we wanted to better compare the
different solutions, we increased the number of shapes
by multiplying them and stacking them on top of each
other in groups of eight. We created additional anima-
tions with 176, 368, and 560 elements. Those anima-
tions became complex enough for devices and browsers
to not be able to display them optimally anymore. We
looped each animation four times (each would play for
10 seconds) and repeated measurements three times
for each browser and device.

The tests were performed in the following browsers:
Microsoft Edge version 89.0.774.76 and Safari version
14.0.3 on a laptop MacBook Pro 15 (2018 – 2,2 GHz
6-Core Intel Core i7) with the operating system macOS
11.2.3 (Big Sur); on an iPad Pro 11 (2018) in Safari and
Microsoft Edge (46.3.7); on a mobile phone iPhone 12
Pro with iOS 14.4.2 in Safari and Microsoft Edge (46.3.7);
and on a low-budget phone Nokia 7.1 with Android 10
in Microsoft Edge (46.03.4).

The Nokia 7.1. device was tested to have a reference for
a low-end device operating under the same stress of
the animations.

Microsoft Edge was chosen because it is based on
Chromium, has a modern rendering engine, and
is widely available on many devices. The Chrome
browser was not tested, as at the time of the research
Microsoft Edge included better reporting of resource
usage (more data in the report) compared to Chrome.

Figure 7: JavaScript code with the Lottie animation settings

	

	

Figure 8: Parameters examined in the experiment

136 J. Mušič and H. Gabrijelčič Tomc – J. Print Media Technol. Res. – Vol. 11 No. 2 (2022), 129–140

Safari was included in order to make comparisons with
a browser that was already built into the system, and
could theoretically perform better because of the deep
integration of software with hardware.

3.  Results and discussion

3.1  Performance

The frames displayed per second depending on play
time are presented in Figure 9 as the average values
for different devices in 560-element CSS, WAAPI and
Lottie animations and in the Edge browser, and this is
followed by explanations for the different devices used.

This was also the limit of what our devices could out-
put. As expected, due to the lower end of the specifica-
tions with not very capable hardware, the Nokia phone
displayed the smallest number of frames on average.
For the largest number of elements, the iPhone dis-
plays the most graphic elements on average, followed
by the iPad and MacBook. The minimum number of
frames displayed per second was 9.7 and the maximum
was 58.0. At 560 elements, the Nokia phone scored the
worst with an average of 12.2 frames per second.

0
10
20
30
40
50
60
70

1 2 3 4 5 6 7 8 9 10N
um

be
r o

f f
ra

m
es

 p
er

 se
co

nd

(n
o.

of
 fr

am
es

)

Sequential second of the play (s)
CSS WAAPI Lottie

Figure 9: Average frames displayed
on the devices per second depending on the play time

with 560-element animations in the Edge browser

However, this device was very consistent in its display
when compared with other devices. With the other
devices, the variations are greater, averaging about
35 frames per second.

At 560 elements, the laptop (MacBook) plays the ani-
mation without major problems, only the frame rate
is quite low. It ranges from 21.3 to 34.3 per second,
but that is still enough for what appears to be smooth

0

10

20

30

40

50

60

70

8 176 368 560

Fr
am

es
 d

is
pl

ay
ed

 p
er

 s
ec

on
d

(n
um

be
r o

f f
ra

m
es

)

Elements in animation (no. of elements). .
CSS WAAPI Lottie

Figure 11: The average number of frames displayed per second depending on the number of elements
in the animation for different types of animations in the Safari browser with added grey projection line

0

10

20

30

40

50

60

70

8 176 368 560

Fr
am

es
 d

is
pl

ay
ed

 p
er

 s
ec

on
d

(n
um

be
r o

f f
ra

m
es

)

Elements in animation (no. of elements). .
CSS WAAPI Lottie

Figure 10: The average number of frames displayed per second depending on the number of elements
in the animation for different types of animations in the Edge browser

J. Mušič and H. Gabrijelčič Tomc – J. Print Media Technol. Res. – Vol. 11 No. 2 (2022), 129–140 137

motion. When animating on a Nokia phone, however,
the slow operation is very noticeable, as the elements
do not move and only random inserts from the anima-
tion are displayed. The frame rate averages around five
per second. On the iPad, trying to replay the animation
caused the webpage to crash. On the iPhone, it did not
work much better, managing to display the first four
seconds at between 12 and 16 frames per second, then
the page crashed.

In Figures 10 (Edge browser) and 11 (Safari browser),
we can track the trend of decreasing quality by adding
the number of graphic elements presented in the ani-
mation. A comparison of the results in Figures 10 and 11
shows that the decrease in the quality or the number of
frames per second displayed is more severe in the Edge
browser. This is particularly noticeable for CSS and
WAAPI animations, where the number did not change
or changed imperceptibly in the first three stages in
Safari. The quality decreased slower for Lottie anima-
tions as well in Safari, compared to Edge, although the
animation completely broke at 560 elements, whereas
in Edge it could still render and play, even if at a low
frame rate. For a better overview, we have added a
projection line to the Safari graph (Figure 11), so we
can predict how many frames per second the browser
would be able to render.

Based on the results, we can also assume that the qual-
ity of the technologies themselves, based on the frames
per second, declined. For a low number of elements,
all the solutions chosen for creating the animations are
appropriate, as they achieved similar results across the
tested devices and two browsers. This was not the case
with the increase in the number of elements displayed
in an animation. As is evident in Figures 10 and 11,
Lottie animations saw a dramatic fall in frames per
second with the increase in the number of elements,
so they are less suitable for complex animations. The
CSS animations and WAAPI produced similar results
throughout the experiment, so they are both viable
choices.

When testing, we also monitored how demanding
the technologies are for the hardware, measuring the
amount of graphics card memory required for the ren-

dering of the animations, as well as how much data
was transferred from the servers as the page loaded.
For the measurements of the amount of graphic card
memory the report by the browser on a per-tab basis
(GPU memory usage) was used.

Table 1 presents an overview of the resource consump-
tion of all tested animation technologies. In this table
showing memory usage and data transfer we can see
that both CSS and WAAPI animations used very simi-
lar amounts of memory and data downloaded. In the
Lottie animations we notice that with eight elements
the situation is similar to that with the other two ani-
mation technologies, while for 176, 368 and 560 ele-
ments there is a clear rise of memory usage. With only
368 elements Lottie had no more memory available.
With regard to data transfer, Lottie also took the lead.
Where CSS and WAAPI animations downloaded about
35 kilobytes of data for 560 elements, Lottie transferred
some 40 times more – 1 400 kilobytes (1.4 megabytes).

3.2  Ease of build

All three methods have their advantages and disad-
vantages. One aspect that can be used to determine
the usefulness of the solutions is their learning curve.

All three solutions use the three core technologies
of the web – HTML, CSS, and JS. None of the anima-
tion technologies require advanced knowledge of the
core languages, although WAAPI requires a little more
knowledge of JS since it is based on that.

Lottie animations are the easiest to create from a
design perspective, because the editor (After Effects)
is visually oriented. This means that apart from a few
clicks when saving keyframes, we can do all the design-
ing by moving the shapes around, move around the
timeline, change the properties of the shapes, and save
the changes. The slightly harder part is implement-
ing the animation in the website. However, this only
requires a few lines of code. Lottie is therefore the first
choice for animators and anyone who does not know
much about coding. It is also the fastest method and
allows for more complex animations that would take
much more time to develop in CSS or WAAPI.

Table 1: An overview of the resource consumption of all animations

No. of graphic 
elements

Memory usage (MB) 
CSS      WAAPI    Lottie

Amount of transferred data (kB) 
CSS      WAAPI    Lottie

 8 15.9 15.3 28.7 11.9 12.7 20.8
176 75.9 78.5 346.4 19.0 19.8 450.0
368 150.6 150.6 536.9 27.0 27.8 941.0
560 222.7 222.7 536.9 35.0 35.8 1 400.0

138 J. Mušič and H. Gabrijelčič Tomc – J. Print Media Technol. Res. – Vol. 11 No. 2 (2022), 129–140

The other two methods rely entirely on programming,
and the animator must be at least somewhat familiar
with web technologies (HTML, CSS, and JS – the latter
only in the case of using WAAPI). For beginners, CSS
may be the better choice, as they only need to use two
languages.

The CSS animations require some basic knowledge
of inserting elements into Document Object Model
(DOM) and using classes in CSS with @keyframe. The
CSS animations and WAAPI animations work in a sim-
ilar way, using keyframes depending on 100 % of the
available time. We also need to set the playback time
and the type of transformations separately. JavaScript
opens up a vast number of additional possibilities for
website development. Therefore, WAAPI is perhaps
more suitable for advanced developers or complex
websites, as it allows many manipulations with ani-
mations. The creation of an animation is much more
time-consuming than simply drawing the changes,
since every change has to be written in the code,
while in After Effects we just move the element, and
the program does the rest.

3.3  Compatibility

Lottie animations are based on the use of SVG ele-
ments and JS code, so they have very good compatibil-
ity with browsers. Only browsers older than Internet
Explorer (IE) 8 cannot display them, but the market
share of these browsers is less than 0.04 % at the time
of writing. The CSS3 animations are also supported in
all major browsers newer than IE 9.

Web Animations API is a newer technology and already
supported by all modern and updatable browsers.
Older versions of Chrome, Firefox, Edge and Safari
cannot display them, however, nor can any version of
Internet Explorer.

4.  Conclusions

The results show that we can reject the first hypothesis,
i.e. Lottie animations have the best balance between
simplicity and performance, since we found that the
balance between the simplicity and performance of
Lottie animations is not the best among all the tested
methods for creating animations, although their crea-
tion is extremely simple.

We can also reject the second hypothesis, i.e. WAAPI
animations will consume more hardware resources
than CSS animations. This is because CSS and WAAPI
animations work very similarly, and thus their use of
hardware resources is comparable. We can, however,
confirm the third hypothesis. Safari, due to its inte-
gration with the hardware that is possible on Apple
devices, can better maintain the quality of animations
when they become more complex.

Based on the results, we can make some recommenda-
tions, and the overview of the creation and operation
of the animations presented in this work can be used
as a guide when choosing the right method for display-
ing animations online, although not all the available
methods were tested in this study. We recommend
Lottie animations as the most appropriate method for
simple animations (e.g., turning the menu icon into a
back arrow) because they are easy to create and imple-
ment in a visual environment.

Complex animations are the easiest to design in Adobe
After Effects, as the tool is visually based. The created
animation is easily exported into a JSON file needed
for Lottie to work, and then implemented in a website.
This ease of creation comes with some drawbacks,
though. Many elements make high demands on device
resources, so the fps might drop if we have too many,
which can lead to a few dropped frames, creating a bad
user experience. For more complex work CSS anima-
tions are best, because the quality is maintained as the
number of elements grows. Production is more difficult
as it relies solely on programming, but this method is
valuable because smooth operation is paramount to
the user experience. Although the operation is similar
to WAAPI, we suggest choosing CSS as it is a general
recommendation not to burden browsers with execut-
ing JavaScript code when an activity can be created in
CSS with similar effort.

The research presented in this work provides a good
insight into comparing the performance of different
online animations and can serve as an example for
further research in this area. The investigation could
be extended to other common methods and libraries
for creating animations, such as SVG animations, ani-
mations with the canvas element, WebGL and others,
as this could give a more complete picture of the state
of online technologies, while the recommendations
would have a wider scope.

J. Mušič and H. Gabrijelčič Tomc – J. Print Media Technol. Res. – Vol. 11 No. 2 (2022), 129–140 139

References

Adobe, 2021. Adobe Flash Player. [online] Available at: <https://get.adobe.com/flashplayer/about/>
[Accessed August 2021].
Bassett, L., 2015. Introduction to JavaScript object notation: a to-the-point guide to JSON. Sebastopol, CA: O’Reilly Media.
Bellamy-Royds, A., Cagle, K. and Storey, D., 2017. Using SVG with CSS3 and HTML5: vector graphics for web design.
Sebastopol, CA: O’Reilly Media, pp. 41–70.
Berners-Lee, T., 2021. Tim Berners-Lee. [online] Available at: <https://www.w3.org/People/Berners-Lee/> [Accessed
August 2021].
Brundrett, A., 2016. Motion design: an intro to UX choreography. User Experience Magazine, 16(4). [online] Available at:
<https://uxpamagazine.org/motion-design/> [Accessed August 2021].
Carrera, P., 2010. Adobe Flash® animation: creative storytelling for web and TV. Sudbury, MA: Jones & Bartlett Learning,
pp. 85–113.
Chinnathambi, K., 2017. Creating web animations: bringing your UIs to life. Sebastopol, CA: O’Reilly Media, pp. 11–72.
Corvoysier, D., 2011. Effectively measuring browser framerate using CSS. [online] Available at: <http://www.kaizou.
org/2011/06/effectively-measuring-browser-framerate-using-css.html> [Accessed August 2021].
Corvoysier, D., 2014. fpsmeter. [computer program] GitHub, inc. Available at: <https://github.com/kaizouman/
fpsmeter> [Accessed August 2021].
Drasner, S., 2017. SVG animations: from common UX implementations to complex responsive animation. Sebastopol, CA:
O’Reilly Media., pp. 15–66, pp. 77–86.
Ferreira, M., 2017. The history of web animation. [online] Medium. Available at: <https://medium.com/@milberferreira/
the-history-of-web-animation-63b106c97fdf> [Accessed August 2021].
GreenSock, 2020. The standard for modern web animation. [online] Available at: <https://greensock.com> [Accessed
August 2021].
Head, V., 2016. Designing interface animation: improving the user experience through animation. New York, NY: Rosenfeld
Media.
McCullough, B., 2018. How the internet happened: from Netscape to the iPhone. New York, NY: Liveright.
MDN Web Docs, 2021. Web animations API. [online] Available at: <https://developer.mozilla.org/en-US/docs/Web/API/
Web_Animations_API> [Accessed August 2021].
Merleau-Ponty, M., 2013. Phenomenology of perception. Translated from French by D.A. Landes. New York, NY: Routledge,
pp. 270–311.
Pierce, P., 2016. UI animation – an ideal tool for immersive UX. [online] UX magazine. Available at: <https://uxmag.com/
articles/ui-animation-an-ideal-tool-for-immersive-ux> [Accessed August 2021].
Potter, M.C., Wyble, B., Hagamann, C.E. and McCourt, E.S., 2014. Detecting meaning in RSVP at 13 ms per picture.
Attention, Perception & Psychophysics, 76(2), pp. 270–279. https://doi.org/10.3758/s13414-013-0605-z.
Pratt, J., Radulescu, V.P., Guo Mu, R. and Abrams, R.A., (2010). It’s alive! Animate motion captures visual attention.
Psychological Science, 21(11), pp. 1724–1730. https://doi.org/10.1177/0956797610387440.
Shamms Mortier, R., 1997. Gif animation web magic. Indianapolis, IN: Hayden Books.
Weyl, E., 2016. Transitions and animations in CSS: adding motion with CSS. Sebastopol, CA: O’Reilly Media, pp. 7–50, pp.
55–106.
W3Schools, 2021. HTML attribute reference. [online] Available at: <https://www.w3schools.com/tags/ref_attributes.asp>
[Accessed August 2021].

140 J. Mušič and H. Gabrijelčič Tomc – J. Print Media Technol. Res. – Vol. 11 No. 2 (2022), 129–140

Appendix

Table A1: Changes (in six levels) of the parameters of the circles: colour, distance
from the left of the screen (dis. left), distance form the top of the screen (dis. top) and size

Level Green Orange Dark blue Light blue

1. Dis. left (px) 218 1 618 844 1 180
Dis. top (px) 190 440 744 478
Size (%) 100 100 100 100

2. Dis. left (px) 1 733 1 013 1 428 1 282
Dis. top (px) 196 326 810 944
Size (%) 100 131 100 100

3. Dis. left (px) 1 280 431 1 697 253
Dis. top (px) 449 361 716 848
Size (%) 100 100 100 300

4. Dis. left (px) 864 1 428 1 313 275
Dis. top (px) 643 810 279 97
Size (%) 100 23 100 100

5. Dis. left (px) 296 1 695 450 1 733
Dis. top (px) 704 612 747 196
Size (%) 100 64 100 100

6. Dis. left (px) 218 1 618 844 1 180
Dis. top (px) 190 440 744 478
Size (%) 100 100 100 100

Table A2: Changes (in six levels) of the parameters of the rectangles: colour, distance
from the left of the screen (dis. left), distance from the top of the screen (dis. top), rotation and size

Level Yellow Red Violet Sandy

1. Dis. left (px) 368 1 040 1 374 696
Dis. top (px) 541 151 879 232
Rotation (°) 0 0 0 0
Size (%) 100 100 100 232

2. Dis. left (px) 725 316 300 1 486
Dis. top (px) 798 243 797 304
Rotation (°) 31 63 240 360
Size (%) 147 144 120 88

3. Dis. left (px) 1 072 790 1 548 1 302
Dis. top (px) 149 763 217 803
Rotation (°) −57 155 386 540
Size (%) 56 180 135 122

4. Dis. left (px) 1 708 233 739 440
Dis. top (px) 542 536 184 874
Rotation (°) 360 240 155 −57
Size (%) 88 120 150 56

5. Dis. left (px) 1 316 1 486 316 1 029
Dis. top (px) 816 217 243 390
Rotation (°) 540 386 63 31
Size (%) 122 110 170 147

6. Dis. left (px) 368 1 040 1 374 696
Dis. top (px) 541 151 879 232
Rotation (°) 0 0 0 0
Size (%) 100 100 100 100

